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TECHNICAL MEMORANDUM

PROJECT ORION: ORBITAL DEBRIS REMOVAL

USING GROUND-BASED SENSORS AND LASERS

EXECUTIVE SUMMARY

A study was initiated in 1995 by NASA, co-sponsored by the U.S. Air Force (USAF) Space
Command, to determine the feasibility of removing the bulk of the threatening orbital debris in low-Earth

orbit (LEO) by irradiating it with a ground-based laser. The laser energy ablates a thin surface layer from a
debris particle, causing plasma blowoff. The dynamic reaction from one or more laser hits lowers the peri-
gee of the orbit and hastens reentry.

The study was undertaken as an initiative of the Advanced Concepts Office at NASA Headquarters
(HQ), and managed by the NASA Marshall Space Flight Center (MSFC). The study team included USAF
Phillips Laboratory, MIT Lincoln Laboratories, NASA MSFC, Northeast Science and Technology,
Photonic Associates, and the Sirius Group.

A wide range of objects in orbit are characterized as orbital debris. The size range of greatest inter-
est is 1 to 10 cm. While objects smaller than 1 cm are extremely numerous and difficult to detect, shielding

against them is straightforward, although somewhat expensive. Objects larger than about 10 cm are rou-
tinely tracked, and their numbers are small enough that operational spacecraft can maneuver to avoid them.
There remain about 150,000 objects between 1 and 10 cm in size. They are problematic to track, too
numerous to avoid, and shielding against them is very difficult or expensive.

NASA believes that the debris population likely to exist during the life of the International Space

Station (ISS) is high enough that limited protection measures are being incorporated into the ISS program.
These will protect it against objects up to about 2 cm in diameter.

Various strategies for irradiating the debris objects were analyzed, including those that engage
objects in several passes over the laser, and those in which immediate reentry is caused by irradiation dur-
ing a single pass. The latter is operationally the simplest: fire at any debris object the sensors show to be
approaching in favorable circumstances, without regard to whether it has been previously irradiated or not.
The former requires a plan such as our "steady rain" approach to guarantee that the risk to space assets
does not temporarily increase at any orbital altitude.

The statistical characteristics of the debris population are reasonably well known. Five different
representative debris objects were defined as reference targets to deorbit. The orbital distribution of the
debris particles was addressed, and the velocity change needed was determined to be a few hundred meters
per second--sufficient to cause the perigee to drop to 200 km. Achieving a 200-km perigee reduces a par-
ticle's expected lifetime in orbit to a few days.

The interaction of laser beams with these debris objects was characterized, and the range of

coupling coefficients of the resultin8 plasma blowoff determined from both experiment and theory. The
required incident beam intensity ancl cluration at the objects was then determined in order to cause the
velocity change necessary for reentry within a few orbits. It was determined that the laser has to place
many very short pulses on the objects to avoid self-shielding of the generated plasma at the object. The
intensity of the irradiation was also determined.

Once the requirements at the debris objects were understood, the required ground laser characteris-
tics were then defined, considering, the effects of the atmosphere on the beam. Effects included in the cal-
culations were turbulence, absorption, stimulated Raman scattering (SRS), stimulated thermal Rayleigh



scattering (STRS), whole-beam thermal blooming, and nonlinear refractive index. A graphical technique
was developed that enables selection of the optimum laser for this system.

A number of options for detection, acquisition, tracking, and handoff of debris targets to the laser

were investigated. These included radar, passive optical, active optical using the laser itself, and combina-

tions of these. In addition, a novel detection technique was analyzed that uses the many communications

spacecraft that are or will soon be in orbit as "free" illuminators to form a bistatic surveillance system.

A spectrum of system concepts was developed, each of which meets some or all the system goals.

These concepts span a range of costs and technology challenges. In addition, a demonstration of the capa-

bility on actual debris could be mounted using mostly existing assets for about $20 million.

The nearest term operational system would consist of a Nd:glass laser operating at 1.06 mm with a

pulse width of 5 ns operating at a rate of 1 to 5 Hz. It would have 3.5-m diameter optics, operate with a

sodium guide star, and produce 5-kJ pulses. This system would cost about $60 million, and would cause

the reentry of essentially all debris in the desired size range in 2 years of operation, up to an altitude of 800

km. This system would be sufficient to protect the ISS as well as all other satellites in LEO below 800 km,
including the planned Iridium and Teledesic systems.

More ambitious technology systems were defined that have the ability to remove all such debris

objects up to an altitude of 1,500 km. This would extend protection to the Globalstar system as well as

other civilian and defense assets. This more advanced system would require an additional $80 million and
an additional year of operation.

A cursory analysis indicated that a system of this type is not inherently an antisatellite weapon,

being relatively very weak. It would have to illuminate a typical spacecraft continuously for years to

destroy its structure, and months to make major changes in its orbit, though unintentional damage to some
sensors and other subsystems would be possible.

Due to the inherently national character of such a system, if serious interest develops to pursue the

capability, it is likely that the Department of Defense (DOD) should be the preferred agency to develop and

operate it for the benefit of all spacecraft, be they commercial, civil, or defense.

The study concluded that the capability to remove essentially all dangerous orbital debris in the tar-

geted size range is not only feasible in the near term, but its costs are modest relative to the likely costs to
shield, repair, or replace high-value spacecraft that could otherwise be lost due to debris impacts for debris

particles greater than about l cm in size. Due to the difficulty in detecting debris smaller than about 1 cm,

and their great numbers, the presence of an ORION system would not obviate the need to shield high-

value, large, long-lived spacecraft to resist impacts of debris particles that are about 1 cm in size and
smaller.

The study concluded that a demonstration system should be undertaken to demonstrate, at low

cost, the ability to detect, track, illuminate, and perturb the orbit of an existing particle of debris.

The study also concluded that the bistatic detection technique could form a needed augmentation to

the current space surveillance systems, particularly in the Southern Hemisphere.
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1. INTRODUCTION

Project ORION was undertaken as an initiative of the Advanced Concepts Office at NASA Head-
quarters, and managed by NASA MSFC. The study team included USAF Phillips Laboratory, MIT
Lincoln Laboratories, NASA MSFC, Northeast Science and Technology, Photonic Associates, and the

Sirius Group.

The orbital debris population has increased at a linear rate since the exploration of space began.
Most of the mass of the debris in orbit is in the form of large objects: inactive payloads and rocket bodies.
Most of the risk to space assets, however, comes from smaller objects. The small objects are mission-
related debris, such as bolts that separate in the deployment of payloads and, most importantly, fragments
resulting from degradation, explosions, and collisions in space.

If enough large objects are placed in orbit, the growth in the debris population will change from
linear to exponential. This is a result of the collisions between large and small objects. The population may
already have reached the threshold for exponential growth in certain altitude ranges. Some mitigation
measures have, therefore, been put into place and others are being discussed.

One mitigation measure already being used is spacecraft shielding. This technology reduces the
risk of catastrophic damage, and the production of more fragments in orbit, in collisions with debris up to
about 1 cm in diameter. For the ISS this protection will be extended up to about 2 cm for critical areas.
There is no technology presently available at a reasonable cost to shield against debris greater than about
2 cm and traveling at 10 km/s mean relative speed. This is because the shielding weight penalty is an
exponentially increasing function of the maximum size of the debris.

The additional shielding required just to extend the ISS protection envelope from 1-cm debris par-

ticles to 2 cm weighs about 10,000 lb. For a launch cost of $10,000 per lb, the cost simply to launch this
shielding is on the order of $100 million. Development, fabrication, and integration could double the cost.
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Avoidancemaneuversareanothermeasurealreadybeingusedto dealwith orbitaldebris.Theseare
effectivefor avoidingobjectslargerthanabout10cmin diameter.Objectsthissizeor largercanbetracked
reliablyandtheirorbitspredictedwell enoughto allow thedebristo beavoided.Thismethodonly applies
to assetsthataremaneuverable,andisrelativelyexpensivein thatit requiresadditionalpropellant.

Presentlyon the,drawing,board,,areafewotherconceptsthatmayeventuallybeuseful.These
includeamaneuverablecatchers mitt unattachedpayloadfor thespacestation.Devicessuchastheseare
inherentlyexpensiveandmaynotbeableto respondquicklyenoughto preventcollisions.

Neithershielding(dueto theweightpenalty)normaneuvers(becauseof thedifficulty of tracking
andgeneratingreliableorbit elements)aresufficientto mitigatedebrisin the2- to 10-cmregime.Approxi-
mately150,0001-to 10-cmdebrisparticlesarecurrentlyestimatedto beorbitingtheEarth.Themajority
of thisdebrisis foundfrom 200to 1,500km in altitude.Themaximumof thedistributionasaIunctionof
altitudeis foundaround1,000km.Thispeakis thoughtto bedueprimarily to asingleevent,the leakage
of metalcoolantfrom thedamagedreactorof aRussiansatellite.Theremainderof thedistributionrevealsa
moreuniformdistributionwithaltitude.Themaximumdensityasafunctionof inclinationisat roughly40°
to 60°.

A naturalmechanismfor theremovalof objectsin LEO is dragin theupperatmosphere.Drag
bringsobjectsgraduallyto lowerorbitsuntil theyeventuallyburnupm theloweratmosphere.Thenatural
decaytimefor aparticledecreasesrapidlyfor lowerorbits,but in orbitsabove500km manyyearsare
reqmred.This studyexploreswaysof acceleratingthisnaturalmechanismby alteringtheorbitsof debris
particleswith laserenergybeamedfrom theground.

Heatingthesurfaceof adebrisparticlewith asufficientlyintenselaserbeamablatesandionizesa
thin layerof material.Theparticleexperiencesasmallbutsignificantmomentumchange.A sufficient
numberof suchinteractions,deliveredat well-chosentimesandpositions,canchangetlaeparticlesorbit
andcauseit to reentersoonerthanit wouldotherwise.

At theenergiesweareconsideringin thisstudy,wewill notbecompletelyvaporizingthedebris
particles,norwill theybefragmentedintoa largenumberof smallerbits.Instead,wehavefoundameans
of deorbitingthedebrisin the1- to 10-cmrange,therangethatisexpensiveto shieldagainstanddifficult
to trackreliably.It will still benecessaryto studymitigationoptions(suchasmorepowerfullasersys-
tems)to addressthelonger-termbut lower-riskproblemof largerdebris.

It is alsorecognizedthatlarge,long-livedspacecraftsuchastheISS will need some shielding even
if an ORION system is deployed. This is because the flux of debris particles smaller than 1 cm is relatively
large, and the small particles are nearly impossible to detect with present technology. Collisions can result
in extensive damage to unshielded spacecraft.

The overall objective of the study was to determine the technical feasibility, the cost, and the devel-
,_ment time for using ground-based lasers and sensors to remove 1- to 10-cm sized debris from LEO.

is was further divided into the following specific subobjectives:

A. Protect the ISS and other assets in LEO to an 800-km altitude

B. Protect all Earth-orbiting assets to a 1,500-km altitude.

We will show that ORION systems that accomplish these objectives may cost less than the amount
needed just to shield the ISS from debris between 1 and 2 cm in size, and wouldhave the potential to pro-
tect not just the space station but all other assets in LEO below about 1,500 km.

This report is in the form of a summary followed by seven technical appendices. The appendices
provide a deeper technical discussion of our analyses.

Sections 2, 3, and 4, which follow this introduction, develop three sets of physical constraints on
the ORION system. Section 2 is concerned with the debris properties: their sizes, compositions, and dis-
tribution in space, and their optical and radar properties. The interaction of solid targets with intense laser
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beamsisconsideredinsection3. Section4 is concernedwith thepropagationof an intense laser beam
through the atmosphere. In section 5, we synthesize the physical and programmatic constraints into a set
of requirements for a system. In sections 6and 7, we discuss existing technology as it relates to the sys-
tem requirements. Section 6 deals with high-energy lasers and related technology, while section 7 is con-
cerned with sensors and tracking. Section 8 contains our feasible options along with cost estimates. In
section 9, we distinguish the ORION concept from anti-satellite weapons. Section 10 summarizes the
study, and section 11 presents our conclusions. We follow this with our recommendations in section 12.

Appendix A was prepared by Dr. James P. Reilly of Northeast Science and Technology. It is a
thorough analysis of solid-state laser technology as it applies to ORION. In particular, it addresses issues
of allowable pulse duration versus extracted energy density, and the cooling requirements of repetitively
pulsed solid-state lasers as functions of pulse energy. The cooling requirements take into account both
beam quality reduction and fracture. Appendix B, also by Dr. Reilly, is a unified evaluation and side-by-
side comparison of all debris-object acquisition schemes. These analyses all used a common analysis
approach, current state-of-the-art focal plane and optical telescope technology capabilities, and current
state-of-the-art microwave detectors and transmitter technologies. Common success criteria are applied to
all detection techniques.

Appendix C, prepared by R. Sridharan of MIT Lincoln Laboratories, expands on microwave and
optical tracking systems for ORION. The present orbital debris environment and engagement strategies are
discussed.

Claude Phipps of Photonic Associates prepared appendix D. It contains a complete discussion of
the laser-target interaction. In addition, it deals with the critical effects of nonlinear processes in the atmos-
phere on pulsed laser beam propagation. These effects include SRS, STRS, and nonlinear refraction and
self-focusing (n2). Appendix C also deals with the relationship between laser-produced impulse and
reduction of debris orbital lifetime, laser and systems design, system demonstration, and first-order cost
models.

Appendix E was contributed by Glenn Zeiders of the Sirius Group. Atmospheric linear propaga-
tion and adaptive optics are treated thoroughly. Also in appendix D are discussions of lifetime of debris in
orbit and engagement geometries that reduce the lifetime. Optical system design, including a coelostat
design for the laser installation, is included.

Appendix F, by William Dent of Dent International Research, Inc., compares the options available
in high-power lasers. It concludes with an indepth review of Nd:glass laser technology.

The bistatic detection of orbital debris with communications satellites is treated in appendix G. It

was prepared by Richard C. Raup of MIT Lincoln Laboratories.

2. THE DEBRIS PARTICLE

One set of constraints on the design of both the laser and the sensor systems is the range of char-
acteristics of the debris particles. The microwave reflectance sets the size and power needed if a radar
facility is to acquire and track objects. Similarly, the optical reflectance determines the size of an optical
tracking system. The optical reflectance also plays a role in the laser system design, since laser reflection
from a target decreases the momentum transfer. The ablation and ionization properties of the particle sur-

faces also set requirements on the size, pulse duration, and power of the laser.

The roughly 150,000 particles in the size range from 1 to 10 cm, which are the object of this study,
can be classified into five distinct groups. Our approach was to examine each category in order to establish
minimum requirements for the sensor and laser systems. The requirements for the categories can then be
compared and the requirements assembled for a system that deals with all five categories.



2.1 Debris Distribution in the I- to 10-cm Size Regime

A great deal of work has already been accomplished in characterizing the debris cloud surrounding
the Earth. The Haystack radar system of MIT Lincoln Laboratories has done pivotal work in this regard.
The work is described more fully in appendix C and is illustrated below.

A sample of the Haystack debris measurements is shown in figure 1. The top part of the figure
shows the number of particles detected per hour in bins of 50-km altitude each. It shows that relatively few
particles are detected below 500 km, and that the number of detections per hour rises to a level of about
0.1 per hour per 50-km altitude bin between 500 and 1,500 km. The flux of detectable objects is defined
as the ratio of the rate of passage of detectable objects to the cross-sectional area through which they pass.
The flux must be calculated from the detection rate in each altitude bin, taking h _ geometry into account.
The derived flux is shown in the lower part of figure 1. It shows a distinct p_,,a : in the flux at an altitude of
1,000 km.
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Figure 1. Haystack measurements of debris count versus altitude in 50-km altitude bins
and derived flux of objects into cylindrical beam.
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Thereareseveralimplicationsof theorbitaldebrismeasurementsfrom theground.First,debrisis
foundat all altitudesrangingfrom below200km to above1,500km. Fluxvarieswith altitude,with a
maximumatabout1,000km.Recallthatdebrisabove500km will remainathreatfor yearsdueto mini-
maldrag.Debrisbelow200km will reenterinafew hoursor daysdueto drag.Finally, andperhapsthe
mostimportantpoint,is thatthereis anexistingradar,Haystack,whichhasproventhatradarcandetect
andtrack1- to 10-cmdebrisin thealtituderangeof interestto theORIONstudy.

With respectto thedistributionof particles,two requirementsweresetfor ORION.SystemA, cor-
respondingto subobjectiveA, is intendedto protectthe1SS and over 300 other satellites below 800 kin.
Configuration B is intended to protect all assets below 1,500 km. Figure 2 compares the orbital debris
population in LEO, the present and projected near-term LEO satellite distribution, and the ranges of
ORION subobjectives A and B. The left-hand graph displays Haystack estimates of total numbers of
debris particles in 100-km altitude shells. Altitude is now on the vertical axis. The center graph shows the
distribution of present and near-term space assets on the same altitude scale. The bar graphs on the right
show the altitude ranges addressed by ORION systems.
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Figure 2.

ORION Systems will provide protection both for existing low-altitude assets

and near-term government and commercial payloads

System A: 200 km to 800 km orbital altitude cleared of debris
System B: 200 km to 1500 km orbital altitude cleared of debris

Comparison of ORION protection for existing LEO assets with debris distribution.

2.2 Debris Categories

Surprisingly, the existing debris distribution can reasonably be organized into as few as five major
categories: Na/K spheroids (reactor coolant), carbon phenolic fragments, multilayered insulation (MLI),
crumpled aluminum, and steel tank rib supports. The laser interactions with and radar characteristics of
these categories are part of the first set of parametric requirements on the laser and the sensor systems. The
characteristics are displayed in figure 3. They include the inclination, apogee, perigee, area-to-mass ratio,
actual size, Bond albedo, Dv required for deorbit, and the estimated number of particles.



Debris Target Matrix
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Figure 3. Orbital debris particle characteristics matrix.

Most of the estimated 150,000 debris particles in the I- to 10-cm size range are in orbits at inclina-
tions ranging from 30 to 99. This has implications for the laser site selection. The latitude requirements
are somewhat relaxed. The use of Haystack itself, in remote association with a laser site at a clear weather,
clear sky location (such as Albuquerque or China Lake) becomes an intriguing possibility.

Only the Na/K spheres (about 50,000 particles) are in nearly circular orbits. The remainder of the
debris particles travel in elliptical orbits ranging from 1,500-km apogee to 520-km perigee. For example,
the bulk of the carbon phenolic fragments are in highly elliptical orbits with apogees around 1,190 km and
perigees around 610 km. Since the inclination of these orbits is about 87 °, they constitute a risk to all
space-based assets in this range; and, since the main source of debris in orbits from 200 to 500 km is
material entering this range from above, they are a risk to practically all assets with orbits below about
1,200 km.

The multispectral reflectivity of the debris particles has been investigated. The requirements pre-
sented to the sensor and laser systems hold no major surprises. The microwave reflectivity of about 0.1 is
manageable to more than a 2,000-km slant range by current, proven radar technology such as Haystack.
Reflection at 1.06 microns to more than a 2,000-km slant range is expected to be sufficient to enable fine
tracking using a laser radar. Reflection in visible light is expected to be more than sufficient to allow sun-
light tracking at appropriate times during the day to more than a 2,000-km slant range. A 2,000-km range
in these categories is the maximum needed to track debris at 45 ° in elevation and 1,500 km in altitude.

A final conclusion from figure 3 bears on the laser system requirements. Orbital calculations of the
cumulative Dv required to deorbit particles from the five categories on a single pass found them to be in the
range from 90 to190 m/s. For more detail, refer to appendixD.



2.3 Particle Engagement Strategies

The 200-km altitude is defined as ORION's threshold for success based on independent results
from orbital models developed at the USAF Phillips Laboratory, NASA/MSFC, and NASA/Johnson
Space Center (JSC). The product TA/m (lifetime Umes cross-sectional-area-to-mass ratio) is graphed in
figure 4. As an example of the use of the figure, first find the 200-km perigee altitude on the horizontal
axis. Read up to the curves and find that TA/m a 1 cm 2 da_/t Next, as a worst case, look up the lowest
A/m in figure 4, which is 0.15 cm 2/g for a steel part. 1 13 divide this into TA/m and find that the
expected life in orbit is about 7 days. In other words, a typical debris particle will reenter in a few days due
to atmospheric drag as it approaches a perigee less than 200 km. For the same A/m at 500 km perigee, the
natural decay time is approximately 18 years.
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Figure 4. The product of lifetime and area-to-mass ratio as a function of perigee altitude.
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Theincreasein lifetimewith increasingaltitudeisoneingredientinarecioefor modelin_thetime
evolutionof thedebrispopulation.It is truethataparticlein theiowerpartof the"200-500km attitude
rangeexits in ashorttimedueto drag.It takesamuchlongertimefor anyoneparticleto moveinto the
upperpartof therangefrom above.This is offsetby thegreaternumberof particlesatthetoppartof the
range.Also, it is the more hazardous particles, with low area-to-mass ratios, that traverse the altitude range
most.slowly. In the 18 years it takes the particle of the previous example to move through the 200- to 500-
_n aJtituae range, many more space operations take place, with thepredictable result that the debris popu-
lation _ows linearly or exponentially m time: One finding of the NRC Committee on Space Debris t "is that
even wire current mitigation measures, the orbital debris population in LEO will continue to grow at a lin-
ear rate (if not an exponential rate) until well into the next century. Only after many years of both current
and new mitigation measures could the population begin to fall.

High laser intensity on the surface of the particle is a key requirement for generating sufficient Dv
for deorbit. Two basic operational strategies are available. The first is called one pass, one deorbit, and the
second is called steady rain. In the former strategy, the particle is detected soon after it rises above the
horizon and a sufficient number of high energy laser pulses are brought to bear on the surface of the par-

ticle. Each pulse ablates a thin layer of the su_ace and subsequently l_onizes it. The reaction causes a s_mall
change in me particle s orbit. Sufficient pulses on one pass bring the perigee below 200 km, which is our
aetlnltion of a successful deorbit.

The second strategy is to engage lower altitude particles before higher altitude ones. The idea is to
walk down, from high to low, a train of particles while actually reducing the risk to space-based assets.
For example, 100-km.bands could be established. First, only particles in the 200- to 300-km range would
be allowable targets. A particle would be lowered from the 200- to 300-kin band to below 200 kin. Only
when a par_tlcle is removed from this range would it be permissible to engage a particle in the 300- to 400-
mn tgand. AS a particle from the 300- to 400-km band falls into the lower band, the risk to assets in the
lower band is no higher than it had been at first, for one particle was removed at the beginning.

Then, particles in both the 200- to 300-km and the 300- to 400-km bands would be eligible to be
engaged. However, the prerequisite for engagement in the 400- to 500-kin would be a particle lowered
from the 300- to 400-kin bands and the 200- to 300-km bands. This same scheme would be followed in

moving to higher altitudes. This steady-rain strategy eliminates the possibility of a temporary increase in
risk to space assets caused by failure to deorbit a particle in a single pass. Post-engagement tracking is
desirable in this case, to verify that the particles have indeed been moved to lower orbits.

As will be discussed later, the Dv's required are such that the one-pass, one-deorbit strategy
should be workable for the majority of the debris we have categorized. This means that substantive tech-

nical margin is offered by having the steady-rain option as a backup operational approach. More details on
the strategies are supplied in appendix C.

3. THE PARTICLE/LASER INTERACTION

The previous section dealt mainly with the debris characteristics that set limits on their detection,
identification, and tracking. This section deals with the characteristics of materials thought to be present in
the debris when they are exposed to high intensity light. The pulse energy, mirror size, and repetition rate
requirements for an ORION laser stem from the surface characteristics of the debris particles being irradi-
ated and the momentum transfer needed for perigee reduction. The requirements on pointing are related to
the appropriate times for engagement of debris in elliptical orbits.

National Research Council Committee on Space Debris, Orbital debris: a technical assessment,
National Academy of Sciences, 1995.
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3.1 The Particle's Surface

Ablation of a microthin layer of the particle's surface is crucial to providing a significant change in

momentum to the particle. Ionization and plasma formation further enhance the momentum transfer. We
ignore the much weaker radiation pressure that exists in the absence of ablation. A substantial amount of
work has been published by the fusion community over the past decade, pertaining to these interactions for

various materials. A wealth of detail can be found in appendix D.

The coupling coefficient Cm is the ratio of the momentum transferred to the energy delivered. The
laser intensity on the target is the ratio of the power in the beam to its cross-sectional area, and the coupling
coefficient is a nonlinear function of intensity for a particular material. The peak of the function corre-

sponds to the laser intensity at which the maximum change in the particle's momentum occurs for the least
amount of energy input.

Figure 5 illustrates the coupling coefficient for a single material, nylon, irradiated by varying inten-
sities of KrF laser radiation. In this experiment, the pulse duration was fixed at 22 ns. At an intensity of
2.5×108 W/cm 2, the laser energy is most efficiently coupled to the momentum change of the particle.
Reducin,,= the intensit by as, much. as 50 percent, only reduces, the. coupling coefficient from a maximum of
6.5 to about 6 dyne JJ. Even if the vaporized matermal msnot iomzed, there is good momentum coupling by
simple evaporation. This illustrates that there is a relatively forgiving threshold intensity requirement for
the laser at the particle, since large (50 percent) variations in intensity mean only a small change in coupl-
ing efficiency.
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Figure 5. What optimum coupling intensity means.

The intensity of a laser pulse of a given energy depends on the pulse duration. A shorter pulse of a

given energy has a higher intensity. To put it precisely, the intensity on the target is the fluence divided by
the pulse duration, where the fluence is the ratio of the energy reaching the target to its cross-sectional
area.
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Figure5 illustratesthecouplingcoefficientfor asinglematerialanda singlepulseduration.The
intensityneededfor peakcouplingefficiencyactuallydependsonboththepulsedurationandthematerial.
As the pulse duration decreases, there is less time for energy reaching the target surface to be conducted to
the interior, and the intensity for peak efficiency decreases. Also, metals require a somewhat higher inten-

sity for maximum coupling than nonmetals because they are better thermal conductors.

Remarkably, we found that a simple relationship predicts the fluence required for most efficient

coupling for all pulse durations and all materials for which there are sufficient data. The relationship is
shown in figure 6. To use this graph, one chooses a pulse duration on the basis of available technology or

atmospheric factors, and then reads the most efficient fluence within a factor of 3 or so. For example, for
pulse durations on the order of 5 to 10 ns, an incident fluence of about 4 to 6 J/cm 2 provides the optimum
momentum coupling for the five categories of debris. Recall that the coupling coefficient depends only
weakly on the intensity in the vicinity of the peak, so the fluence requirements are quite forgiving.
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Figure 6. Laser fluence for optimum momentum coupling at various pulse durations.

The intensity of a continuous wave (CW) laser is less than the peak intensity of a pulsed laser of
the same average power and wavelength. Our models of the CW systems are based on simple vaporization
of the debris surface. This study pointed out the need for experimental studies of CW photoablation of
materials more complex than elemental surfaces. Also, we have found no studies of laser interactions with
surfaces having shapes more complex than flat plates.

3.2 When And How Often To Engage

As we showed in the previous section, short laser pulses give efficient momentum coupling at rea-
sonably low fluences. In section 6, we will argue that such fluences are within the capabilities of near-
future technology pulsed lasers operating from the ground. Here we present our estimates of the number
of pulses needed to remove debris in various orbits.
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It iscrucialto engagetheparticleattheproperpointof itsorbit andin therightdirection,or the
resultingDv will not havethedesiredeffect.In somecircumstances,it couldraisetheperigee.Engaging
theparticleasit is risingabovethelaser'shorizonis typically thebest.For anyengagement,Dv will occur
alongthenormalto theparticle'ssurfacebeingirradiated.This isnotnecessarily(andnormallywill not
be)in exactlythesamedirectionasthelaserbeam.However,for manyparticles,duebothto spinandran-
domorientations,theaveragedirectionfor themomentumchangeisexpectedto bealongthelineof sight
of thelaser.Engagingastheparticleisrisingabovethehorizonnormallygivesavectormomentumcom-
ponentoppositetheorbitalmotion,henceloweringtheperigee.However,therearespecialcases(e.g.,
perigeeoverthe laser)in whichoneshouldnotengageat debrisrise,whichplacesarequirementonthe
sensorsystemdesignthataparticle'sorbit parametersmustbedeterminedbeforeandafterengagement.
Theprimaryengagementrule foundin thisstudyis thatanypulsethattendsto increasethetangential
velocityshouldbeavoided.Moredetailon thegeometricfactorsfor successfullaserengagementcanbe
foundin appendixE.

Thefinal keypieceto thelaser/particleinteractionpuzzledealswith whethersufficienttimewould
beavailableto engagetheparticleonorbitwith sufficientpulsesto lowerits perigeebelow200km.Figure
7 showstheDv neededto deorbitdebrisasafunctionof altitudefor variousorbits.To usethefigure,start
with the initial altitude,suchas500km.For thisaltitude,we readarequiredDv changeof about90m/s.
TherelationbetweentheDv andthefluenceis:

Dv = Cm F A/m

where Cm is the coupling coefficient and F is the fluence. With the figures in the previous section (steel
part with A/m = 0.15 cm2/g, F = 4.6 J/cm 2, Cm = 6.5 dyne s/J) we find Dv = 4.5 cm/s. Therefore, it
would require 2,000 pulses to bring the perigee below 200 km in this example, If the pulse rate is 10 Hz
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to Reach 200 km Final Altitude, vs. Initial Altitude

-5O

-100

0

-150

E

: _q P -200

-250

-30O

-350

hao = 1500 kin, impulses applied at apogee, vs. hpo

hao = 1000 km, impulses applied at apogee, vs. hpo

hao = 500 kin, impulses applied at apogee, vs. hpo

%o = 1000 kin, impulses applied at apogee, vs. hao

hpo = 500 km, impulses applied at apogee, vs. hao

200

Initial Altitude hpoor hao (kin)

I

_'kL

"_"JL

1000 1500

Figure 7. Velocity change applied in a series of increments to reach 200 km final altitude
versus initial altitude.

13



or more,only about3 minor lessarerequiredfor theengagement.This iseasilywithin thetimeinterval
anydebrisparticleremainsin sight.

Theanalysisof thepreviousparagraphis aworstcase,sincethesteelpartshavethelowestA/m of
all the debris in orbit. We will consider issues of laser propagation in the next section, but we note here

that a fluence of 4.6 J/cm 2 provided by a laser at 1 mm launched by a 4.5 m adaptive optic would require
an energy of at least 3,600 J per pulse at 0 ° zenith angle, or at least 12,000 J per pulse at 60 ° zenith angle.
If such energies are not available, or not available at such a high pulse rate, then it may be necessary to
deorbit the steel parts in multiple passes. The other target types will be much easier to deorbit in a single
pass.

4. LASER ATMOSPHERIC PROPAGATION

This section deals with a third set of physical constraints on the ORION laser and sensor systems.
First, the relationship between diffraction-limited mirror size and spot size on the particle will be dis-
cussed. Next, we consider the intensity and beam quality losses associated with operating through the
atmosphere. These losses can be severe unless properly handled in the design of the laser system. The
physical mechanisms considered are atmospheric absorption, turbulence, and nonlinear effects.

4.1 Linear Propagation

As we showed in the previous section, a sufficiently high laser beam intensity on the particle sur-
face is needed to impart the desired momentum change. For a given amount of energy in a pulse of a given
duration, the intensity is inversely proportional to the cross-sectional area of the beam at range. We now
consider the lower limit on the beam diameter in the regime of linear propagation.

The spot size is fundamentally limited by diffraction. The diffraction-limited diameter of the spot is
proportional to the wavelength and inversely proportional to the diameter of the telescope used to focus it.
The smallest spot size is obtained, in principle, by using the shortest wavelength and the largest mirror
diameter available.

The largest mirrors in existence are 10 m in diameter, but for a moment let us consider a much less
expensive 3.5-m mirror as an illustration. Also, let us take 0.5 mm, which is in the visible part of the spec-
trum, as a typical "short" wavelength. At the longest slant range of interest, 2,000 km, the spot diameter is
about 70 cm. Recall that a fluence of about 5 J/cm 2 is required for most efficient coupling with a 10-ns
pulse. With these numbers, we arrive at a pulse energy of 20 kJ. Pulse energies considerably higher than
this have been obtained with existing lasers. Thus, a simple calculation shows that existing technology, in
principle, can easily provide the intensity needed for momentum transfer to the most distant pieces of
debris under consideration.

While smaller spot sizes further relax the laser power requirement, the fine tracking challenge
grows, as does the size of the mirror. For primary mirrors larger than about 3.5 m, aperture size becomes
a primary driver to the cost of the laser system. Designing to shorter wavelengths reduces the aperture size
requirement proportionally, but raises serious issues relating both to turbulence and the surface accuracy of
the mirror.

4.2 Turbulence and Atmospheric Absorption

The air through which the laser beam passes before leaving the atmosphere is not a uniform
medium. The index of refraction is a function of the air density. The lower layer of the atmosphere, or
troposphere, is characterized by turbulent motion of cells of air with varying density. As convection cells
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movethroughthebeam,or thebeammovesthroughcells,thebeamtendsto spreadandlosecoherence
becauseof thedensityvariations.

FortheORIONproject,it is importantto maintainthebeamquality inorderto placesufficient
intensityontheparticleatrange.Thisplacestherequirementfor adaptivewavefrontcorrectiononthe
beamdirectordesign.AppendixE treatstheseissuesin greatdetail,andwesummarizethemhere.

Theeffectsof turbulenceon thebeamcanbenullifiedbydistortingtheopticsof thebeamdirecting
telescopeinacontrolledway.This is "adaptiveoptics."Thesizeof theindependentlycontrolledzoneson
thecorrectingoptic (assumedtobeequalin sizeto theaperture)shouldbeon theorderof theFriedscale
ro. The Fried scale is on the order of 10 cm for a wavelength of 1 mm. It decreases with decreasing wave-

length. From this we can see that one thousand or more independently controlled, primary mirror seg-
ments will be needed to correct a 3.5-m mirror in a 1-ram laser beam director.

Adaptive optics with over 100 segments are already in use for astronomical imaging. Larger sys-
tems are now under development, including a system for the 3.5-m STARFIRE telescope.

The information on atmospheric conditions needed to correct the mirror cannot come from the
debris itself. The light travel time is such that the laser must be pointed up to 100 m ahead of the particle.
An artificial beacon, or guide star, must be used instead. A guide star is made with a laser much lower in

power than the "pusher" laser. The beacon will be aimed ahead of the particle and used to sample the
column of air through which the pusher laser must pass.

The guide star is not effective unless some of its energy is scattered back to the ground to return the
phase information necessary to distort the correcting optics. The beacon laser's wavelength can be chosen
so that some of its energy is scattered back to the telescope from a distinct layer high in the atmosphere.
Astronomical systems in use today typically make use of the presence of sodium in a layer about 90 km
above the ground. It is fortuitous that sodium can be found in this layer, for it is not difficult to build a
laser that can excite the sodium atoms into resonance fluorescence and return a usable signal to the ground.

At the position of the intended laser spot in the sky, the area over which the beam can be corrected
by a guide star is known as the "coverage size." The coverage size decreases as wavelength decreases. If
diffraction alone were considered, one would use the shortest wavelength available. But once the coverage

size is smaller than the intended beam spot size, it is no longer possible to use the guide star to correct
completely for atmospheric turbulence, and the beam would spread and fall in intensity. One way around
this would be to use more than one guide star. Several closely spaced guide stars could provide the phase
information needed to correct the optics. While this is possible in principle, it has not been demonstrated.

We have found that for adaptive primary mirrors 3.5 m in diameter and smaller, a single sodium
guide star is sufficient to provide the necessary corrections for a wavelength of 1.06 mm. If a shorter
wavelength were used, then a minimum of four closely spaced guide stars would be needed to provide
sufficient information to make the necessary wavefront corrections for a mirror this size.

A full analysis of the tradeoffs in laser wavelength must take atmospheric transmission into
account. The atmosphere is highly absorptive for most wavelengths of the electromagnetic spectrum.
Fortunately, transparent and partially transparent windows exist in which the laser beam will propagate
without serious attenuation. The visible and near infrared from 0.4 to 1.3 mm is one window, as is the
infrared band from 9.5 to 12 mm.

Although the technology exists for powerful lasers at 10 ram, the mirror size required to produce a
small spot on a target is prohibitively large. There is well-developed technology for powerful lasers in the
visible to near infrared, and it is within this window that the most reasonable options are to be found.

Further discussion of existing laser technology may be found in section 6.
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4.3 Atmospheric Nonlinear Effects

Even though the laser wavelength is chosen in a window of atmospheric transparency, one must
consider the possibility of beam spreading and energy loss by nonlinear mechanisms. These are mecha-
nisms that grow in importance as the intensity of the beam in the atmosphere increases, or as the path
length in the atmosphere increases. We have made an extensive study of these effects, including nonlinear
refractive index, STRS, SRS, and whole-beam thermal blooming.

Nonlinear refractive index tends to degrade beam quality by spreading the beam, since the refrac-
tive index tends to increase at high intensity. STRS attenuates the beam by breaking it up and scattering it
in different directions. SRS attenuates the beam by scattering it in different directions at different wave-
lengths. Whole-beam thermal blooming spreads the beam as it heats the air through which it passes. The
nonlinear mechanisms are depicted in figure 8. Our modeling of these effects is treated completely in
appendix D. The limits imposed by the nonlinear mechanisms on the ORION laser are graphed in figure 9.
The beam is assumed to be propagating vertically through the atmosphere, so that the near-field intensity
on the vertical axis refers to the beam as it leaves the laser. The beam is also assumed to originate at sea
level. The graph would appear somewhat altered at angles other than vertical, and if the laser were located
at a high altitude above sea level. The laser pulse duration is shown on the horizontal axis. The graph is for
a specific wavelength, 1.06 mm, but it has the same basic shape for other wavelengths.

Nonlinear Processes in the Atmosphere
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Figure 9. Maneuvering room for the ORION system limited by SRS, STRS, n2, and other effects.

The intensity limit imposed by whole-beam thermal blooming is shown with two light solid lines,
one each for telescopes of 1 m and 10 m in diameter. Since it takes time for the air density to change in
response to heating, this effect can be eliminated by using short pulses. The allowed intensity for whole-
beam thermal blooming rises to extremely high levels for pulses shorter than 1 ms, where other limiting

mechanisms come into play.

The limit imposed by STRS is shown with a heavy solid line. It, too, can be avoided by choosing
a short pulse duration. If the duration is kept below 10 ns, then both STRS and whole-beam thermal

blooming are displaced by another intensity-limiting mechanism.

Nonlinear refractive index is not so well understood for long pulses, but for pulses less than about

100 ns, it imposes an intensity limit of about 5×107 W/cm 2. Our best prediction is that the limit increases

slightly with shorter pulses.
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For pulses between 200 ps and 10 ms, the most stringent limit is set by SRS. This limit is shown
in the figure with the lower heavy solid line. With the limits imposed by the four nonlinear mechanisms
combined on one graph, a region of operability or "comer of opportunity" stands out. The comer, for this

wavelength, is at an intensity of 3x106 W/cm 2 and a duration of 10 ms. Pulses shorter than this or lower
m intensity should not be significantly affected by the nonlinear mechanisms.

One possible exception to this "comer of opportunity" view will be considered later for the attain-

ment of subobjective B. When the SRS intensity limit first begins to rise for short pulses, it rises so
slowly that the higher allowed intensity is too little to compensate for the decrease in fluence due to the

shorter pulse. But, recall that the intensity needed for most efficient momentum coupling decreases with
decreasing pulse length. There is a possible operating point near 100 ps pulse duration where the SRS
limit has risen enough to make such operation attractive, and where the nonlinear index effect is not yet the
limiting consideration.

It is important to note how the situation of figure 9 changes when a different wavelength is used.
As the wavelength decreases, the near-field intensity limits also decrease for a given pulse length. This
implies that the smaller apertures permitted by diffraction for smaller wavelengths can only be realized up
to a point. Beyond that point, smaller apertures are forbidden by near-field intensities beyond those
allowed by nonlinear atmospheric effects.

5. LASER AND SENSOR SYSTEM REQUIREMENTS

The particle characteristics, the laser/particle interaction, and the atmospheric propagation form a
set of physical design constraints for ORION. In this section, the requirements are folded together into a
complete set of requirements for the laser and sensor systems. Also included are the programmatic consid-
erations of cost and schedule. The requirements on the laser system will be compared with existing tech-
nology in section 6. In section 7, the sensor requirements will be related to existing technology.

The requirements for the laser are summarized in the top row of figure 10. The laser system must
operate in one of the atmospheric transmission windows, such as the one shown by the dark band from
0.4 to 1.3 mm. Beam effects due to turbulence must be minimized by active correction in which the area of
coverage is as large as the laser spot at range.

In order to place the critical intensity on the particle at range, nonlinear effects must be minimized
by operating in the region of opportunity defined by short pulse duration (e.g., 10 ms for 1 mm) and

below the critical near field intensity (e.g., 3 MW/cm 2 for 1 mm). The laser and corrective optics must be
capable of achieving the critical intensity and fluence (e.g., 600 to 850 MW/cm 2, 4 to 6 J/cm 2) on the
debris particle at least at 800 km altitude and preferably to 1,500 km.

If we take the number of debris particles to be 150,000, appropriate for subobjective B, then the
time required to remove all the debris is about 0.3 year/min times the time for each piece of debris. The
time for each piece is an average, which must include off-duty time. For example, if the average operating
time to remove one piece of debris is 10 rain, then the time to remove all the debris is 3 years. The time to
acquire suitable targets, and the repetition rate and maintainability of the laser, are all constrained by this
together with the progammatic requirement that all debris to be cleared in some definite time, such as 5
years.

The Haystack radar has shown that in a field-of-view of 0.05 °, the rate of detection of debris parti-
cles is about 6/h. Of these, only about 1/h is in circumstances suitable for targeting. The rate must be an

order of magnitude higher, or the laser will be idle most of the time as it waits for a new target to be identi-
fied. Therefore, we recognize that the field of regard for the ORION sensor should measure on the order

of 0.50. If a sensor has a very high sensitivity and can be moved rapidly, then the field of regard can be
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Figure 10. ORION system requirements.

built up by sweeping rapidly through several fields of view. The Haystack radar, for example, with its

high sensitivity, could scan a 0.5 ° wide field in a bowtie pattern that would be virtually "leak proof."

Ultimately, the position of the particle must be determined to within about 0.4 mrad (70 cm beam

width at 2,000-kin slant range). The field of regard of 0.5 ° (9,000 mrad) is so much larger that a fine

tracking mechanism will be needed. To distinguish coarse from fine tracking, we set a somewhat arbitrary

crossover of 100 mrad. This corresponds to about 200 m at a distance of 2,000 km. The actual crossover

could be larger if the fine tracking is capable of finding the object in a larger field, or smaller if the coarse

tracking mechanism is very precise.

Twenty-four hour, remote operability in all weather conditions would be ideal. If the sensor does
not operate at all times or in all conditions, then either the laser average power must be made higher or the
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time toremovethedebrispopulationgrows.Remoteoperabilityisneededfor handoffof thetracking
informationto the laser.

Thesensitivitymustbesufficientto see1-cmdebrisin eachcategoryata slantrangeof 2,000km.
Thesensorsystemrequirementsaresummarizedbelowthelaserrequirementsin figure 10.Thefull analy-
sisappearsin appendicesB andC.

6. THE ENGAGEMENT LASER SYSTEM

Three sets of constraints on the laser concept imposed by the debris characteristics, the laser-target
interaction, and atmospheric propagation were discussed in sections 2, 3, and 4. In section 5, these were

synthesized to form a full set of constraints. In this section, we review existing laser technology in the
light of the constraints. Laser technology is reviewed in appendix F. We will see that the requirements
converge on a wavelength near 1 mm and either a pulsed solid state laser or a CW gas laser.

6.1 Pulsed Solid-State Lasers

Solid-state lasers have the highest pulse energies available at this time. Each of 10 beams of the
Nova laser at Lawrence Livermore National Laboratory (LLNL) produces 10 kJ per pulse. The Beamlet
laser at LLNL produces 20 kJ per pulse. Both of these are Nd:glass lasers. Pulse durations of about 1 to
50 ns are typical for Nd:glass lasers. Thus, these lasers operate in the ORION comer of opportunity for
reasonably sized apertures. For example, for a 10-kJ pulse lasting 10 ns, SRS can be avoided (at 1 mm)
for apertures larger than about 0.4 m.

The fundamental wavelength of the Nd:glass laser is 1.06 mm, which is in the visible/near infrared
window. The visible wavelength, 0.53 mm, is derived with high efficiency by frequency doubling in a
KDP crystal. The shorter wavelength initially appears attractive, since a smaller aperture is required to
produce a given spot size. The SRS limit is more stringent for the shorter wavelength, however, and the
beam correction would require unproven multiple guide star technology. For the near term, then, the 1.06
mm wavelength is favored, with the shorter wavelength a strong future possibility.

The highest power lasers today are designed for low repetition rates. Beamlet, for example, oper-
ates at under 0.02 pulses per second. The difficulty with higher rates is that nonuniform heating of the
amplifying medium degrades the optical quality of the beam. Beamlet can be operated continuously at its
designed rate because the cooling system minimizes nonuniform heating as long as its maximum repetition
rate _s not exceeded.

If we are to accomplish ORION's task without proposing lasers much more powerful than those in
existence, we must increase the repetition rate, or else the deorbiting of the debris will take far too long.

We are aware of two ways to overcome the repetition rate limitation. One is to fire the laser rapidly without
cooling and to allow the amplifying medium to heat up uniformly so that optical quality is not affected.
This is called the "'hot rod" mode. It is modeled in detail in appendix A. It should be possible to fire up to
1,000 pulses in a short time interval before the laser is cooled for the next round.

Smaller lasers have proven that higher continuous rates are possible. At LLNL, for example, a
laser that produces 100 J per pulse operates at 6 pulses per second, and is being upgraded to 12 pulses per
second. Although cooling of the medium results in nonuniformities, the optical quality is actively corrected

with a stimulated Brillouin scattering (SBS) mirror. The design of such a system is treated in appendix F.

Overall, the Nd:glass laser at 1.06 mm was found to be the laser with the best potential for accom-
plishing the mission. The technology is widespread and developing rapidly because of activity in fusion
research.
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6.2 Pulsed Chemical and Gas Lasers

CO2 gas lasers operate in the mid-infrared (IR) band, at wavelengths of 10.6 and 11.2 mm. In

order to be competitive with solid-state lasers, they must either be made much more powerful or a much

larger aperture must be used. For example, since the wavelength is 10 times that of the Nd:glass laser, a

telescope 10 times larger would be needed to produce the same diffraction-limited spot size. This would

make the telescope diameter on the order of 40 m. If, instead, the same size telescope were contemplated

for both lasers, the power of the CO2 laser would have to be 100 times greater to produce the same fluence

on the target. SRS would then become a limiting factor. Either solution would be very expensive.

Two other lasers that operate between the near- and mid-IF regions are HF/DF chemical and the

CO lasers. Neither is as well developed as Nd:glass or CO2 lasers. They suffer, to a lesser degree, from
the same limitations as the CO2 laser at longer wavelengths. The DF laser is included in figure 11 for ref-

erence.

Technical Basis for Choosing ORLONLaser Device (Longer-term Example)

Laser Atmospheric Windows

0 6 8

II!1
2 4

Rep- Beam
Pulsed _ Sizeat
Laser (p.m) 1500 km

Options (cm)

PulseWidth:

Nd Solid
State

Nd Solid
State

DF Chemical

CO2Gas

CWLaser

Option

Iodine
Gas

I
10 12

Nonlinear Effects

(SRS,STRS,n2)

,_>10ns:
Iatm>3MW/cm2

Debris alt.

(km)

500-1500

1-20--cm
ClearTime

(yrs)

<5

Debris

Intensity
(MW/cm 2)

"_>5-10ns:
600-850

0.53 24

1.06 48

4± 180

10.6 480

LaserPulse

Energyfor
Efficient Thrust

(kJ)

1 ps 10ns

24 3.0

97 12

1370 170

9700 1200

BeamFluencein

Atmosphere
(J/cm2)

I ItS IOns

0.085 0.011

0.34 0.043

4.9 0.61

34 4.3

SRS-SaIe Beam
Fluencein

Atmosphere
(J/cm 2)

1 ps 10ns

2 004

2.5 0.05

Guide-
stars

Needed

4*

(difficult)

Cost ($M)

lps 10ns

54 23

100 40

2.5 0.06 0 1920 290

3 0.07 0 11400 1700

Debris
Fluence

(J/cm2)

Laser Device Choice
Basis

* Cheaper
ButGuidestar Kluge

BestCostThat
Works

HighCost,
Won't Work (SRS)

High Cost,
Won't Work (SRS)

Wave- 1500 km

Length Beamdia

_m (cm)

1.3 CW 59

Laser Power
for Efficient

Thrust (kw)

3200

(Power Overkill
Necessary for

Thrust)

Intensity in

Atmosphere
(W/cm2)

11

Blooming-safe
Intensity in

Atmos. (W/cm21

8?

Guide-
stars

Needed
Cost ($M)

68

Basis for
Laser Device Choice

Blooming?
Beam Quality?

Target interaction?
Next Lower Cost

Figure 11. Technical basis for choosing the ORION laser.
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6.3 Continuous Wave Gas Laser

An iodine laser operating at 50 J per pulse has been demonstrated in the United States. The long
pulse duration of 10 ms would place it well below the intensity for most efficient coupling. The wave-
length of 1.3 mm is not far from the Nd:glass wavelength and just inside the near infrared window.

The repetition rates of iodine lasers are as high as 1 pulse per second, with higher rates under
development. It is interesting to note that these lasers can be made to operate in a CW mode. The

ROTOCOIL laser at the USAF Phillips Laboratory is an iodine laser at 1.3 mm with a continuous power
of 40 kW. Although this is somewhat different from the pulsed mode of operation we had envisioned for
ORION, our preliminary study indicates that it could accomplish its objectives.

In a CW mode, the intensity must be kept well below the peak intensity of a pulsed laser in order to

avoid thermal blooming and STRS. Even so, the average power must be greater than for the pulsed laser,
since short pulses couple most efficiently at lower fluences. These two conditions can be met, since the
CW laser is constantly in use, where the duty cycle of the pulsed laser can be 10 -6 or less. We will include
an iodine CW option in one of our systems to consider for subobjective B.

Data on all the lasers considered are included in figure 11.

6.4 Relevant Electro-Optical Technology

The laser system consists primarily of a beam director, a guide star subsystem for optical correc-
tion, a coarse track handoff system, a fine track subsystem, and a high-energy, pulsed laser. Large aper-
ture systems with corrective optics were identified as part of this study. Many of the details are reserved
for appendix E.

The Advanced Electro-Optical System (AEOS) located in Maui, HI, is shown in figure 12. It
employs a 3.6-m primary mirror. This facility's mission is high-accuracy, high-sensitivity satellite
detection and tracking. The STARFIRE facility located near Albuquerque, NM, is intended for a similar

mission. It employs a 3.5-m aperture for high-sensitivity, high-accuracy tracking.

AEOS and STARFIRE use adaptive optics with a single guide star to correct wavefront aberra-

tions due to atmospheric turbulence. The tracking rates are about 18 ° per second in azimuth and 5* per
second in elevation. These rates are sufficient to accomplish the ORION objectives. Although costs will be
considered in more detail in section 8, it is interesting to note that STARFIRE costs included $7 million for

the primary mirror and $10.5 million for the telescope mount. Total facility costs came to about $27
million.

Analyses such as this have shown that there are several possible directions one might take to
accomplish subobjectives A and B. Subobjective A could be accomplished with a 1.06-mm laser using a
3.5-m mirror. Operation would be within the corner of opportunity with 5-ns, 5-kJ pulses. The time
needed to do this depends on the tracking and handoff system, which will be discussed in the next section.
If the sensor system were not capable of 24-h operation, the subobjective A could still be accomplished by
using a somewhat larger telescope to obtain a more intense beam.

Recall that subobjective B raises the coverage from 800 km to 1,500 km. This will require more
energy on target at greater range. Three laser systems are promising in this regard. One is to develop a
Beamlet-type Nd:glass laser for high pulse rates at 10 to 20 kJ per pulse. A 6-m diameter mirror would be

needed to avoid SRS. Alternatively, a 0.1-ns pulsed Nd:glass laser could be developed to take advantage
of the increase in the SRS threshold with decreasing pulse duration. The third option that seems feasible

for this subobjective is the CW iodine laser. This would also require a 6-m adaptive optics telescope.
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7. THE ACQUISITION AND TRACKING SENSOR SYSTEM

In this section, we review current detection and tracking technology in connection with the system
requirements already set forth in section 5. Detecting, acquiring, and coarse tracking a particle the size of a
marble at 2,000 km is a challenging requirement. Handing off to a laser engagement system is another

challenging undertaking. Several options have been identified that can satisfy the requirements dictated by
the debris population characteristics. One proven technology option has been the MIT Lincoln Laboratories

Haystack radar. Another is the STARFIRE passive optical satellite tracking system in Albuquerque, NM.
Thus, there is substantive technical margin for this aspect of the problem.

It is logical to consider active optical tracking, with either a pulsed or CW laser, making use of the
pusher laser in a defocused mode. We will see that this has the potential to extend the availability of optical
tracking from the 4 h per day of the passive option to nearly 24 h per day.

Also considered in this section is the possibility of using existing communications satellite tech-
nology to perform debris detection. The forward scattering enhancement, made possible by the location of
satellites in orbit, makes this scheme possible. The fact that existing systems might be used parasitically
makes this option attractive from a cost standpoint.

Along with the foregoing, it is important to consider the handoff to the laser system and whether
the radar can be used remotely. For example, building a clone of Haystack at an optimum laser site would
cost on the order of $80 to $100 million. Remote radar support during operations promises to save the cost
of building a new radar. With all the requirements in mind, we now explore radar, passive optics, bistatic
radio frequency (RF) detection (using communication satellites to illuminate the particles), and laser radar.

7.1 Microwave Radar Option

The advantages of radar include all-weather operation and relatively high accuracy in position and
signature. As mentioned previously, the Haystack radar developed and operated by MIT Lincoln Labora-
tories at Tyngsboro, MA, (42.6* N latitude) is an example of proven radar technology with the potential to
accomplish the ORION mission. The facility is depicted in figure 13. Haystack is probably the most sensi-
tive radar in the world capable of achieving the tracking rates necessary for ORION. Haystack operates at
10 GHz with a range resolution of 1 to 10 m and an angular resolution of 10 to 50 mrad. Its range rate per-
formance is 0.1 to 1 crn/s. Given these performance values, Haystack would be suitable for use in the
ORION sensor mission.

With Haystack, the disadvantage of being in a nonoptimum environment for the laser may be ame-
liorated by remote handoff. In principle, this is primarily a software development and integration task,
which Lincoln Laboratories believes can be done with existing technology. The advantage of this devel-
opment would be to utilize the advantages of Haystack without having to clone it at the laser facility site (a
very expensive undertaking).

The general importance of this development is that the handoff technique could be applied to any
radar. ORION could use any radar that might be available and suitable. One penalty for using Haystack
remotely would be its latitude, which constrains the minimum inclination. This is expected to be only a
minor disadvantage since it can see the majority of the debris populations.

Search and acquisition could be accomplished using a two-dimensional bowtie scan to build up the
field of regard. Such a scan pattern at 30 ° elevation would be virtually leak proof. The radar would provide
tracking and discrimination of the target with a resolution less than 200 m. A resolution cell on the order of

the laser beam size (about 1 m) is needed for laser engagement with the particle, so the radar would be
required to hand off to a fine track system.
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Canonical Microwave Radar Ior ORION
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Figure 13. Haystack: canonical microwave radar for ORION.

Of course, the engagement laser itself could be used in the fine track role by simply defocusing the

beam to capture the particle in the 200-m pixel provided by the radar, and then walking the resolution cell
size down to 1 m. At this point, the laser would engage the particle in order to lower its perigee. In addi-

tion to the other advantages discussed, radar provides knowledge after the engagement as to how a parti-

cle's orbit was affected.
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Of course, the engagement laser itself could be used in the fine track role by simply defocusing the
beam to capture the particle in the 200-m pixel provided by the radar, and then walking the resolution cell
size down to 1 m. At this point, the laser would engage the particle in order to lower its perigee. In addi-
tion to the other advantages discussed, radar provides knowledge after the engagement as to how a par-
ticle's orbit was affected.

Remote handoff is extremely promising. It is expected that a reasonably straightforward develop-
ment will resolve information transfer concerns and minimize information transfer time lags. Coordinate
conversions could be accomplished by modem computers in near-real time either at Haystack or at the
laser facility. The USAF Phillips Laboratory is presently investigating predictive accuracy in using such an
approach. A demonstration project would be needed to complete a detailed solution.

Although Haystack is the flagship of operational USAF radar, other existing radars including the
USAF HAVE STARE (with significant modification) would be viable candidates for accomplishing the
ORION sensor mission, either collocated or in the remote mode.

Microwave radar approaches the ideal of 24 h per day operation in all weather. It can operate in the
day or at night, and even in cloudy conditions. We have estimated that Haystack or another radar would
provide up to a 20-h operating window per day, allowing for severe weather and maintenance time.

7.2 Passive Optics Option

Using Sun reflection from the debris particle, high-sensitivity, high-resolution passive optics
offers the advantage of low cost as compared to building a new radar. Developing a remote handoff capa-
bility for the radar offers the attractive approach of a complementary radar/optics approach. This is impor-
tant, since surveys show that some debris detected in visible light is not detected by radar, and vice versa.
Passive optics also provide immediate feedback that the particle was successfully engaged by the laser,
since plasma ignition produces a bright flash in the visible.

The disadvantage to passive optics alone is that it only operates during times of clear weather when
the Sun/particle/observer angles are appropriate. This alignment typically provides a 4 h per day window
for operations. As will be shown later in discussing ORION system options, using passive optics alone
will extend the clearing time beyond 2 years for the debris population under 800 km. We have been able to
keep it to 3 years by using a larger mirror than for the microwave radar option. Another disadvantage is
that orbit assessment would be difficult with a passive optics system alone. Orbit assessment is proven
technology existing at Lincoln Laboratories and also used with STARFIRE and AMOS.

Figure 14 shows the STARFIRE facility. A single facility this size located in a suitable location

(e.g., China Lake) could accomplish both the detection and tracking mission and the particle engagement
mission. In short, a single $50 million facility such as this could protect ISS and all other assets under 800
km.

7.3 The Bistatic Detection Option

Orbital debris is continuously being illuminated by a number of communications transmitters
located on the ground, in LEO, and in geosynchronous orbit (GEO). This illumination is due to the normal

functions of such satellites, and is available to ORION at no cost. Dramatic increases are expected in the
numbers of communications satellites in the next few years, particularly in LEO, and thus in the number of
potential illuminators for use in ORION surveillance.
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ExampleOpticalSystem

• STARFIRE, Albuquerque

,, 3.5 meter F/32 Telescope (Narrow FOV)

• Satellite Tracking

• High Sensitivity

• High Accuracy, Angles 10 prad

Figure 14. STARFIRE: example optical system.

One major implementation option makes use of the fact that the debris target forward-scatter cross
section can be much larger than the back-scatter cross section usually used for surveillance. This is true

when the target is large compared with the wavelength of the radiation, and is nearly in line between the
transmitter and the receiver (i.e., scatter angle close to 180°). The most interesting such application of the

forward-scattering enhancement, without placing any requirements on the communications satellite, is to
place a special antenna array on the ground that would look for radiation scattered or diffracted by debris
from any normal satellite downlink signal. The large numbers of satellites (close to 1,000 in LEO in the
time frame of the year 2000) would assure that favorable geometries for detection of debris objects occur

frequently.

Another implementation option is to use a ground receiver to detect the radiation scattered forward

by the debris from the communications satellite's uplink signal. This differs from conventional radar only
in that the transmitter and receiver are not collocated, with the forward scattering angle being between 0 °

and 180 °. While with this option the transmitter is much more powerful than the typical spacecraft trans-

mitter, most large radars are still more powerful than communications uplinks. Nonetheless, these uplinks
are "free" to ORION, and so will also be considered for debris detection.
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The details of our analysis of the bistatic detection option are contained in appendix G. Main results
were the characterization of the detectable debris size as a function of the downlink frequency, satellite
altitude, and receiving army size and geometry. The detectable debris size decreases as the array size
increases and as the frequency increases. Further improvement can be made if the target is illuminated over

several receiver beam widths. The forward-scattering enhancement is greatest for shorter path lengths, and
when the target is near either the transmitter or the receiver. The implications are that for a given power
density reaching the ground, the debris is more easily detected with signals from LEO satellites than GEO
satellites• This is true even taking into account the larger antennas and powers of GEO satellites.

In order to model the potential of the bistatic detection, a baseline calculation was performed for a
debris particle orbiting at 500-km altitude. The baseline frequency is taken to be 20 GHz, with the satellite

placing 10-]2 W/m 2 on the ground from an altitude of 800 km. The numbers are consistent with existing
communications satellites. The theoretical limit for a 25-m detector antenna is 0.1 m 2, or 30-cm debris
particles.

The situation improves for other communications satellite sources. There is an unusually powerful
transmitter on the ACTS satellite in GEO. For a target in high-Earth orbit (HEO), the disadvantage of
greater altitude is compensated by the fact that its effective radiated power is greater, a debris particle
would spend a greater time in its beam than for a satellite at a lower altitude, and the forward-scattering
effect is enhanced by the proximity of the target to the transmitter. This case is also shown as a curve in
figure 15, even though debris at this height was not the subject of the ORION study. With the ACTS
spacecraft, debris particles of 0.03 m 2, or 17 cm across, would be detectable near GEO with a 25-m
ground receiver array.
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Planned LEO communications satellites such as Iridium or Teledesic will deliver a much greater

power density to the ground, principally in order to work with portable and other small terminals. Fre-
quencies may also increase to 30 GHz. If a piece of orbital debris were to pass between such a satellite and
an array on the ground in a favorable alignment for forward-scattering enhancement, the threshold detect-
able area would fall dramatically. For an object passing within 50 km of the transmitter, the threshold
detectable size is 0.001 m 2, or 3-cm size, when using a 25-m detector array. Equally dramatic is the theo-

retical threshold for detection of a target passing through the uplink beam of a powerful ground uplink
transmitter to a GEO satellite. In this case, the same detector array could detect 0.0004 m e, or 2-cm size

debris particles at 500-km altitude, even though the forward-scattering enhancement is absent in this case.

The calculations of detection performance do not account for some losses in signal processing and
are somewhat idealized, and thus practical systems would probably have lower performances. While prac-

tical systems would thus only be able to detect larger debris than indicated above, the use of larger antenna
arrays could compensate for the losses. These larger arrays would be more costly, though they would still
be receive-only. The implication is that bistatic detection can probably be effective for debris particles of a
few centimeters or larger. Further study must be done to see if a system concept is possible that would

extend this performance down to 1-cm size.

In summary, bistatic detection using communications satellites, radar satellites, and other tracking
radars on the ground is very promising and needs to be investigated further.

7.4 Laser Radar Option

With this option, the laser system itself would simply be used to perform both the sensing and the
particle engagement functions. As the altitude range to be searched increases, the laser energy must by
focused into smaller and smaller spots in order to give an adequate signal-to-noise ratio. This requirement
is in conflict with the need to search wider areas at higher altitudes. The conflict can be addressed by

increasing the pulse repetition frequency of a pulsed laser, but at some point the round-trip light travel time
will become larger than the time between successive pulses. At this point, the next outgoing pulse threat-
ens to blind the detector to the return from the previous pulse. For altitudes above about 600 km, this

might require a detecting telescope separate from the beam launching telescope.

This laser radar option, while it appears to be feasible, greatly increases the complexity of the laser

system. The sensing requirements dictated by the characteristics of the debris population would drive the
design to a 5- to 10-m mirror with multiple guide stars. Clearly, a remote radar and/or passive optics offers
more technological and cost margin for the 800-km objective. Choosing the objective of removing all
debris below 1,500 km makes the laser radar approach more attractive as one would already be forced to

larger apertures to keep the engagement laser spot size small at the longer ranges.

7.5 Sensor Conclusions

Four sensor approaches have significant capability applicable to the ORION mission, thus sub-
stantive technological margin has been found in the sensor technology. As was shown previously, this
was found to be true for the laser area as well. The findings are summarized in figure 16.

The two most promising near-future options are the radar and the passive optics. Both offer _,ood
tracking capabilities, good to excellent discrimination capabilities, and excellent handover accuracy, t_oth
can search wide areas of space to detect 1-cm debris out to 2,000 kin. Both offer some damage assess-
ment. Either option can satisfy ORION mission requirements. For a demonstration, it may be advanta-
geous to have both radar and optics operating together hand in hand. As will be shown later, the radar
option is slightly higher in cost than the passive optics. Nevertheless, the radar can operate in all-
weather/day/night conditions, so the rate of detection and hence the rate of debris removal is higher than
with the passive optics.
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Sensor Conclusions
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Figure 16. Sensor conclusions.

While the bistatic detection system offers high potential for reduced costs, the technique is not as

well analyzed. The finding that this approach has the capability to detect at least 5-cm debris at 500 km

holds implications for several applications, including augmentation of the USAF space surveillance sys-

tems, and warrants further study. Since we need reliable detection of 1-cm objects, it was not selected for

ORION at this time, though it may prove to be a viable contender upon more detailed analysis.

The laser radar meets ORION requirements. Yet, the technology is not as mature as radar or pas-

sive optics, hence the cost growth risk is higher. A large (6-m) mirror would be required, with the associ-

ated requirement for multiple guide stars. As discussed previously, this is future technology requiring sub-
stantive development.

7.6 Handoff

A smooth transition from coarse to fine tracking is vital to ORION. The radar provides particle

location and velocity to a resolution cell about 200 m across at 2,000 km. Once the particle's orbital

parameters are determined by the radar (about 10 s after detection), a laser beam defocused to the same

resolution as the radar will be precisely pointed to illuminate the same region of space. The debris particle
will then be simultaneously illuminated by both the radar and the fine track laser. An automatic, computer-

controlled, step-by-step focusing procedure will then commence in which the beam is incrementally
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focused down to the minimum attainable spot size. Radar (or passive optics) coverage will be continuous

during this procedure to complement fine tracking.

Once the laser is pointed at the predicted location of the particle with an uncertainty corresponding

to the minimum spot size of the engagement laser, engagement occurs and is repeated as long as the par-
ticle remains in the window of opportunity. Radar tracking and handoff (i.e., tracking information up-

dates) continue throughout the multiple engagements. Once the particle leaves the window of opportunity,
the radar assesses the post-engagement orbit for bookkeeping purposes.

8. SYSTEM COSTS

The first crucial finding provided by this study is that ground-based lasers and sensors are a feasi-

ble approach to orbital debris removal. As the study unfolded, it became clear that a number of technical

approaches were feasible, adding confidence. Finally, these technical approaches were found to have rea-
sonable costs as compared to other orbital debris mitigation approaches.

Throughout the study, cost was viewed as a key factor in developing configurations. Costs were
primarily determined by analogy, supported by NASA costing models. As a result, two demonstration
experiments have been identified, and five affordable systems may work, pending the results of a demon-
stration. Hence, we are confident that the ORION mission can be accomplished with substantive pro-

grammatic margin.

Either the AEOS or the STARFIRE facility could relatively easily be adapted to do an active
ORION demonstration. This would consist of detecting and tracking a cataloged particle with a perigee of

approximately 200 km and then modifying its orbit to a measurable degree. An existing Nd:YAG or
Nd:glass providing 100 J per pulse would be sufficient for the demonstration, assuming a pulse duration
of 1 to 10 ns and a repetition rate of one pulse per second. Guide stars would be needed for adaptive

optics.

Although the beam intensity on the primary mirror would be moderate, the mirrors would probably
have to be coated to handle the flux. No cooling of the mirror is expected to be needed.

One demonstration series we have envisioned would use passive optics only and operate just 4 h

per day. This is the least expensive option. The other demonstration series would involve an existing radar
and remote handoff. Either demonstration could best be controlled with the use of special space shuttle-

deployed targets, as described in appendix D.

An overview of the systems we believe are feasible for subobjectives A and B is shown in figure
17. It also shows the estimated cost ranges and percentages of the debris population included for each

system graphically.

The cost estimates for an ORION demonstration converge around $20 million. For a cost on the

order of $80 million, orbital debris removal can be demonstrated as part of a phased program and most
debris below 800 km removed. One system option, AI, employs a passive optics sensor in conjunction

with a Nd:glass laser at 1.06 mm, uses a 3.5-m primary mirror, and should cost about $65 million. Cost
details are shown in figure 18, and models are explained in detail in appendix D.

Option A2 employs a Haystack-type radar operating remotely in conjunction with a Nd:glass laser
at 1.06 mm. It uses a 3.5 m primary mirror, and should cost about $100 million. A2 clears all the debris

below 800 km (about 30,000 particles) in 2 years, while AI takes 3 years.
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System B Designedto clear altitudesup to 1500 km
in3 years after On-Orbit DemonstrationProgram
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4 h/day 20 h/day 20 h/day 20 h/day 20 h/day

Cooled bursts Cooled bursts

5 ns, 1-5 Hz 5 ns, 1-5 Hz

Government New

furnished equipment
(GFE)with modifications

Existing Existing

Activelycooled Nd Activelycooled Nd CW Iodine
100 ps,l-5 Hz 10 ns,l-5 Hz ground-based
modified LLNL system one NIF module recycled gas

New New New

New New New
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• At site
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at site
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Figure 17. Cost summary graph.

• Laser illuminator
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Top-Level Program]Cost Matrix--ORION

System Component

Laser Device

Estimated Cost

Beam Director Optic

Estimated Cost

Guide Star System

Eslimated Cost

Acquisition/Tracking

Estimated Cost

Target Set

Estimated Cost

Integration

Estimated Cost

TOTAL P. E. Cost Range

Near-Term On-Orbit Demo Options

(using Proven Technologies)

Demonstrate acquisition, track, handover,

irradiate, spot maintaince, de-orbit

in approximately I year from go-ahead

System A

Clear out 200-800 km altitude range

in less than 3 years from approval

Options for near Term System

(using Proven Technologies)

Demo Option I

1-10 nspulsedNdYag
(100 J)
(GFEL. HackelLaser
at PL)

1.3-3.0

GFE3.5M Telescope
with modifications
required

3.4--6.3

GFELLNLSodium
System & SORRayleigh
System

1.4-2.3

GFEpassive EO
(sunlightillumination)
(4 h/dayoperation)
GFE3.5 M telescope
1) demo acquisition/
handoverto remote
low-powerilluminator
with retro-reflector
orbiter

5.0-9.0

Up to 300 kmaltitude
special demo targets
(shuttle-deployed)

0.5-1

1.2-2.1

$13M-$23M

Demo Option 2

1-10 nspulsedNdYao
(100 J)
(GFEL. Hackel Laser at PL)

1.3-3.0

GFE3.5M Telescope
with modifications required

5.2-9.9

GFELLNL Sodium System &
SORRayleigh System

2.0-4.0

Haystack/HaveStare/Millstone
(24 h/dayoperation)
1) demo acquisition/handover
to remotelow-powerilluminator
with retro-reflector orbiter
2) demoacquisition/handover
to remotepusherlaserwith
orbiter target

5.5-9.8

Up to 300 km altitude
specialdemo targets
(shuttle-deployed)

0.5-1

1.5-2.6

$16M-$28M

Option A1
(4 hrs,'dayoperation)

5 ns pulsed NdYag
(5 KJ, 1-5 Hz)
(BeamletDesign,Hot Rod
mode, Cooledbetweenbursts)

28.6-31.6

GFE3.5M Telescope
with modifications required

4.0-6.0

New Sodium System

4.9-6.5

PassiveElectro-optical
(sunlightillumination)
(4 h/dayoperation-1crew
shift)acquisition/handoverby
smalltelescopeat Pushersite
with realdebris Targets

5.4-8.1

Upto 800 kmaltitudes
existingdebris populations

4.0--5.0

$57M-$69M

Option A2
(20 hrs/dayoperation)

5 nspulsed NdYag
(5 KJ, 1-5 Hz)
(BeamletDesign,Hot Rod
mode, Cooledbetweenbursts)

33.3-37.3

New 3.5M Telescope

35.0--40.0

NewSodium System

6.5-9.7

Haystack/HaveStare/Millstone
(existing radars @ need sole"
use)(24 h/dayoperation-
3 shifts)acquisition/handover
to remotepusherlaserwith
realdebris targets

7.2-12.3

Up to 800 kmaltitudes
existingdebris populations

8.3-9.7

$93M-$108M

Figure 18. Detailed cost breakdown.
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Top-LevelProgram]CostMatrix-ORION

SystemB

OptionsforAdvancedTechnologySyslem
(usingNear-TermTechnologies)

Clearout200-1500kmaltituderange
inlessthan3 yearsfromapproval

Option B1 Option B2 Option B3
(20 h/clayoperation) (20 h/clayoperation) (20 h/day operation)

100 ps repped-pulse pulsedNdYag
(2-4 kJcooled, 1-5 Hz)
(requiresdemonstration)

45.9-66.9

New 6 meterbeamdirector

57.3-60.3

New Sodium Guidestar

7.1-10.7

Microwaveradar; remoteor
locatednear Pusher site
(24h/day operation)
A) New radarnear site$80M
or B) remoteradarhandover$5M
or C) GFEHaveStare equipment
guesstransp.,setup, use$5M

16.9-21.9

Up to 1500 km altitude
existingdebris populations

10 ps repped-pulsepulsedNdYag
(10-20 kJ cooled,1-5 Hz)
(193 rdmoduleof 192-laser NIF)

50.9-79.9

New 6 meterbeam director

57.3--60.3

New SodiumGuidestar

7.1-10.7

PusherLaseras active illuminator
and rangingradar
(24h/day operation)
estimatedadditionalstaff,
consumables,
ADP=$16.gM-$25.gM
or B) Remoteredarhandover$5M

16.9-25.9

Up to 1500 km altitude
existingdebris populations

CW Iodine
(2-4 MW, ground-based,
recycled gas)

67,9-105.9

New 6 meter beam director

57.3-60.3

New Sodium System

7.1-10.7

PusherLaser as activeilluminator
(24h/dayoperation)
estimatedadditionalstaff,
consumables,
ADP= $23.9M-$39.9M
or B) Remoteredar handover$5M

23.9-39.9

Up to 1500 kmaltitude
existingdebris populations

12.2-15.5

$140M-$176M

12.5-17.2

$145M-$195M

15.6-21.7

$172M-$239M

Figure ! 8. Detailed cost breakdown (continued).

For a cost on the order of $160 million, orbital debris removal can be demonstrated as part of a
phased program and the envelope of coverage extended to 1,500 km. Configurations B 1, B2, and B3
remove all debris below 1,500 km (about 150,000 particles). Costs grow because requirements dictate
larger primary mirrors (5 to 10 m).
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For example, option B 1 total costs were derived to be $140 to $176 million. The breakdown for
this configuration includes a 0.1-ns pulsed Nd:glass laser operating at 2 to 4 kJ and 1 to 5 Hz and costing
$45.9 to $66.9 million. Also included is a Government-furnished telescope with a 6-m adaptive primary

mirror costing $57.3 to $60.3 million. A new sodium guide star subsystem costs $7.1 to $10.7 million.
The radar subsystem costs $16.9 to $21.9 million. Integration costs are expected to range from $12.2 to
$15.5 million. This is a summary of a more detailed breakdown. The total costs for the other configura-
tions were derived in a similar manner.

Option B2 would use a 10-ns Nd:glass laser both as a pusher and as a laser radar. The total cost is
estimated to be about the same as for option B 1. For option B3, we have assumed the development of an

iodine CW laser operating at 2- to 4-MW average power. Our best estimate of the system cost is in the

range $172 to $239 million.

9. NOT A WEAPON

ORION would make a poor antisatellite weapon. Each laser pulse ablates a layer only a few mole-
cules thick. Thus, at the energy levels delivered, burning a hole through the skin of a satellite would take

years. Deorbiting a satellite might be accomplished, but it would take months of dedicated operation.
Hence, accidentally bringing down a satellite is not possible. Satellite sensors looking directly at the laser
site may be blinded, and some other spacecraft components damaged, but this can easily be avoided with
the proper operating procedures at the laser site. The procedures would include avoidance of illumination
of known spacecraft, which is a technique being used today with complete success. As a result, the
ORION system could be operated without endangering any declared active spacecraft.

10. SUMMARY

The orbital debris population poses a significant threat to the ISS and other assets in LEO. Cur-

rently, millions of dollars are planned toward mitigating the risk, which includes curtailing debris produc-
tion as well as shielding and maneuvers.

The characteristics of the orbital debris population including size, shape, composition, reflectivity,
altitude, and inclination are reasonably well known. The laser/particle interaction and plasma dynamics on

extremely short timescales are sufficiently understood. Laser propagation through the atmosphere is con-
strained by many effects including turbulence, absorption, and SRS. Very short pulses allow us to work
within the limits imposed by these physical phenomena.

Several proven ground-based laser and sensor technology options have been found to allow con-
struction of feasible systems. Sensor technology includes ground-based radar systems (e.g., Haystack)
and high-sensitivity passive optics that will provide the detection and coarse tracking. Laser options
include a repetitively pulsed Nd:glass laser operating at 1.06 mm with a 3.5-m adaptive optics primary
mirror and a single sodium beacon. The integration of the sensor and laser options were more than suffi_
cient to remove all debris below 800 km. An advanced system using technology becoming available in the

next 5 years will extend this envelope to 1,500 km.

For a cost on the order of $20 million, orbital debris removal can be demonstrated. For an addi-
tional cost on the order of $60 million, or $80 million total, essentially.all orbital debris in the 1- to 10-cm
size range below 800 km can be eliminated over 2 to 3 years of operation, thus protecting the ISS and other
assets (e.g., Iridium, Teledesic) against debris of these sizes. A cheaper system capable of debris removal
only to 500-km altitude could be used if the sole objective were to protect the ISS. For a total cost on the
order of $160 million and an additional year of operation, this envelope can be extended to 1,500 km, thus

protecting both ISS and Globalstar.
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Thebistaticdetectiontechniqueusingcommunicationssatellites,thoughnotselectedfor inclusion
in the recommended system architecture at present, may prove to be an inexpensive and readily imple-
mented means to augment the nation's space surveillance capability. It may be particularly useful to detect
and catalog debris in the southern hemisphere, where there is a dearth of sensors at present.

11. CONCLUSIONS

Removing 1- to 10-cm debris from LEO using ground-based lasers and ground-based sensors is
feasible. All five debris categories can be brought down in 2 to 3 years of ORION operations.

The study objectives have been achieved. Reasonable confidence exists that the systems are feasi-
ble in the near term. Suitable hardware and facilities exist in the United States to accomplish a demonstra-
tion experiment. Given the high cost of shielding individual orbiting assets, particularly against debris
larger than 2 cm, it is strongly recommended that a demonstration be initiated immediately as an alternative
or complementary debris mitigation approach.

Russian progress in ORION-related technological areas has been impressive. They presently enjoy
substantive capabilities and facilities, and are eager to apply these to an international project. This should
be considered in any plan of action.

Due to the inherently national character of an ORION-type system, if serious interest develops to
pursue the capability, it is likely that the DOD should be the preferred agency to develop and operate it for
the benefit of all spacecraft, be they commercial, civil, or defense, with NASA playing a supporting role to

ensure benefits to the ISS. There may be sufficient motivation to pursue the bistatic detection surveillance
technique, whether an ORION system is deployed or not.

12. RECOMMENDATIONS

Maximizing the use of Government-furnished equipment hardware, initiate a demonstration pro-
gram to find, track, and push a suitable particle presently in LEO and verify the change in orbital parame-
ters.

This demonstration should focus on using an existing high energy laser. Preferably, a Nd:glass
laser operating at 1.06 mm should be used in conjunction with an existing adaptive mirror such as STAR-
FIRE or AEOS. The remote application of Haystack should be demonstrated as part of this, as well as the
application of passive optics.

A few existing, cataloged (i.e., tracked by U.S. Space Command) debris targets with suitable
characteristics should be identified. Both Haystack and the passive optical tracker should be demonstrated
against these targets. The laser should then be used to engage the debris, and the resulting change in orbit
parameters should be measured.

Based on further study, demonstration findings, and accurate cost estimates, select a configuration
option either to accomplish the 800- or the 1,500-km mission.

Perform a definitive study of bistatic detection as a surveillance technique and its application to
augment debris detection capability, particularly in the Southern Hemisphere.
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ADVANCED ORION LASER SYSTEM CONCEPT

Dr. James P. Reiliv

Northeast Science & Technology

Introduction

The purpose of this brief study is to analyze the complete potential of the solid state laser in a

very. long pulse/high energy mode of operation as well as in a very. short / lower energy mode of

operation, operating in an actively-uncooled ( termed "Hot-Rod" mode or "Heat Capacity" mode)

method of operation. Concentrating on the phase aberrations to be expected by operating in such

manner, the study presented here reports on estimating the bulk phase and intensity aberration

distributmn in the laser output beam during a single repped-pulse train. Recommendations are made for

mitigating such aberrations.

Summary of Results; Conclusions and Recommendations

In this study, we have analyzed the optical performance of an uncooled solid state laser, and for

reasons of reliability of performance, have chosen a slab-geometry, flashlamp-pumped MOPA design.

In the pulse-width regime required ( 5-50 ns) the single pulse output fluences allowed by LLNL

demonstrations, but degraded for repped operation, allow reasonable-shaped MO pulses to be amplified

to the reuquireed energy level with little or no extraction-induced phase aberrations. Further, using

LLNL data on thermal gain limitations, 100 -1000 pulses should be extractable from the laser device

before gain reduction and other spectroscopic effects begin in the gain medium. At this point, optical

pumping and lasing should be ceased, and cooling begun to return the medium to its original state. The

analysis indicates that pump-nonuniformities and intrinsic gain medium nonuniformities will probably

be the limiting causes of beam phase aberrations, as well as those in associated optical elements---all of

which point to engineering design and perhaps adaptive optics to ameliorate those effects which cannot

be eliminated by quality control and good engineering.

Statement of the Problem

In designing single,pulse solid-state uncooled lasers, the concentration typically is on the

extraction of maximum single-pulse energy at the desired pulse width with the desired beam average

phase uniformity. In designing repetitively -pulsed solid-state actively-cooled lasers, the concentration

is typically on the extraction of maximum long-term average power at the given pulse width and desired

pulse repetition rate, all with the desired beam average phase uniformity.

In the present study, however, the concentration is on the design of uncooled solid-state lasers

with the extraction of maximum total emitted laser energy ( single-pulse energy X pulse rep rate X

run-time) with a specified pulse width and with minimum area-integrated beam phase aberration, all

with an eye toward systems which can be cooled down relatively quickly to repeat this repped-pulse

iasing cycle in a reasonably fast turn-around time.

Method of Approach

In this analysis, we :

1. first lay out the alternatives to the modes of operation

- geometry of the gain medium ( slab vs rod)

-amplifier vs oscillator operation

2. then outline the key issues affecting the present problem

41



3. then discuss heat deposition and its effects on phase differences across the beam

4. then analyze the sources of phase aberration in the output beam, and

5. finally identify potential mitigation approaches

Technical Analysis

A) Mode of Operation

Figure 1 shows the basic geometries of solid-state lasers :

1. rod gain medium :axial extraction, radial pumping, radial cooling

2. slab gain medium: long-dimension extraction, short-dimension pumping and cooling

3. slab gain medium: Brewster's-angl¢ extracIion and pumping, short-dimension cooling

Figure 2 shows the laser design trade-off parameters One of the important parameters is the
maximum extractable fluence (joules/cm 2 of output) which the gain medium material can handle

without important irreversible damage in bulk or at the surface. The current values of maximum damage

threshold for SINGLE-PULSE operation at various pulse-widths are showing Figure 3. Note that in the
region attractive to ORION ( 5 to 50 ns ) the allowable output fluence at 1.06 microns is between l0 and
20 joulesJcm 2 for glass and YAG hosts doped with Nd ions.

It is well known for both gas lasers and solid-state lasers, that oscillator or resonator extraction

techniques produce the highest extraction efficiency and the most compact and lighter-weight laser

designs, while master-oscillator/power-amplifier (MOPA) extraction techniques can provide higher

beam quality, more flexibility and tighter control of the output waveform and phase / frequency content

of the output beam at the price of larger, heavier and more cumbersome laser system designs.

SINCE MINIMIZING FLOOR-SPACE AND WEIGHT IS NOT AN OVER-RIDING

CONSIDERATION FOR THE GROUND-BASED ORION CONCEPT, WHILE MAXIMUM

FLEXIBILITY AND CONTROL AT HIGH BEAM QUALITY IS OF UTMOST IMPORTANCE, WE
HAVE CHOSEN THE MOPA AS OUR RECOMMENDED LASER ARCHITECTURE.

The next mode of operation to be chosen is the cooled vs uncooled version of the solid state

laser. Clearly for single-pulse operation, no cooling is considered. For rep-rated operation however,

whether to cool or not IS an issue. Clearly for continuous 24 hrs / day operation, we require active

cooling. However, for an operating mode where one 30 seconddebris engagement occurs every 10

minutes or so in one two-hour period at dawn and another at dusk ( a very real possibility for a viable

near-term system), one must question whether ACTIVE cooling is necessary during lasing, or just a
rapid cooldown between shots. These two operating scenarios can result in VERY different laser

designs, with the former (active cooling while lasing) being a MUCH more difficult ( and hence time-

consuming and hence expensive) laser design than a simpler, cheaper and potentially more robust

system which simply needs to be cooled down between bursts. It is the latter system which is discussed
in this report.

B) Key Issues

Figure 4 lists the issues which must be considered in any solid-state laser design as to damage,
performance as a simple laser energy source, and performance as a source of coherent radiation.

We assume in this report that issues of damage and performance as an energy source are taken care of

by good engineering design. We discuss her those issues concerning beam quality, especially those

important to an active optical system whose function it is to compensate for these in real time, either

open-loop (by pre-programming) or in closed-loop operation using sensors and feedback loops.
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C) Heat Deposition Analysis
The discussion of heat deposition in the solid state laser is dominated by the line spectrum of

the absorption by the solid state laser's gain medium convolved with the power spectrum of the pump

source, and to a lesser extent the design of the optical cavity which traps (or does not trap) the pump

radiation for ultimate absorption by the gain medium. The conventional mode of operation fro small
lasers and/or CW lasers is to use efficient CW Diode lasers as pump sources. Because the CW diode

laser is tuned exactly to the desired absorption bands in the solid state laser, waste heat is limited to

quantum efficiency effects in the pumped solid-state laser. However, these CW diode lasers are too low

in power to pump the multi-kilojoule lasers required for ORION, so we are left with the conventional

pump sources --dominated by doped Xenon flashlamps. Figure 5 (ref 1) shows typical energy

deposition fractions compared to typical laser extraction. Perhaps only 8% of the input lamp power is

absorbed by the laser gain medium, and only 2% of the input lamp energy appears as output laser

energy. Hence, this figure would indicate that of the deposited energy in the solid state medium, 25% is
emitted as radiation and 75% remains as heat. Figure 6 and 7 (from refs, 2,3 and 4) show more recent

achievements in efficiencies, including the additional efficiency levels for cooled systems, either real-

time actively-cooled or between-burst cooling as is discussed here. Note the efficiencies for diode

pumping in Figure 7, and summarized below.

Pump Scheme Diode Pump Flashlamp Pump

Electrical Power Into Pump

Power Absorbed by Laser

Power emitted by laser

Power Remaining as Heat

100 units (U) 100 U
70 U-90 U 50 U-75 U

1 U-14 U 0.3 U- 7 U

50U-90 U 45 U- 75 U

It is these inefficiencies which must be addressed in the laser design, because it is the waste heat

LEVEL and its DISTRIBUTION which dictate the phase aberrations produced in the beam. Note

however, that the differences in diode pumping and flashlamp pumping are minimal as far as phase

aberrations go. The major difference is in the size and complexity of the power supplies which power
them.

Figure 8 sketches the energy level diagram for 3-level and 4-level solid state lasers., and sets the

nomenclature for the gain terms. Figure 9 sketched the thermal profiles in an amplifier stage which is

relativdy well-filled with laser intensity, but which (as it must) has zero intensity near the edges of the

gain medium. Note the thermal profiles immediately after the extraction and the slower-timescale

deposition (leakage) between extraction pulses due to the slow upper-state decay which being excited by

the pump light. Figure 10 shows the expressions for the time-dependent heat deposition in the solid

state laser medium. Figures 11 and 12 list the equations used here to analyze the time-dependent

thermal profiles. Figure 13 shows the temperature change all along the optical axis of the final

amplifier stage immediately after an extraction pulse. Clearly, the more solid medium is used (ie, the

longer the gain medium "L") the less is the temperature change, because of the increased heat capacity
of the laser medium. After the extraction, heat continues to be deposited, because of the finite-rate

leakage out of the upper states of the laser medium between pulses. Figure 14 shows the temperature

change a{l along the optical axis of the last amplifier stage JUST BEFORE the next extraction pulse

(when the gain has been pumped up to design value). In the next Section, we will use these temperature

changes to scope the requirements on beam phase homogeneity.
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D) Phase Aberration Analysis

Figure 15 shows the relations which give rise to phase inomogeneities A W --the temperature-

dependent index of refraction of the gain medium and its thermal expansion (ie physical length growth)

due to heating in the center of the medium as compared to the region near the edge of the medium

which has been pumped optically just as hard as the center, but has had no laser extraction ( so it will

tend to get hotter than the center after upper-state relaxation to ground). Figure 16 shows the phase

difference between the optical axis and the medium edge resulting from various A T's along various

length gain media. The very simple relation tells a very powerful story -- keep either the temperature

difference between center and edge very small ( ie DO NOT COOL, and FILL THE GAIN MEDIUM )

or keep the medium very short. Or both. A value ofA W of 0.3 keeps the far-field intensity within 10%

of that ofa_diffraction-limited beam. The simple formula below described this relationship.
I/Io = 1/(I + (AW) 2)

Figure 17 uses AlP = 0.3 as a limit, and relates the temperature rise in the slab center to the extracted

single-pulse fluence. For Nd Yag, up to 20 joules/cm 2 are allowed ( ie LIPTO MATERIAL DAMAGE

THRESHOLDS !!! ) before the temperature differences are noticeable. If we limit the beam to the 1-20

joules/cm 2 region, no gross extraction effects should be seen in uncooled amplifiers. The major thermal

differences will therefor be dominated by pump uniformity --that is good engineering of the pump lamps

and their optical cavities. Another cut at this conclusion is shown in Figure 18, which indicates that

flat-top (or equivalently super-gaussian shaped) amplifier pulses are not required for radial thermal
uniformity at the I0 joule/cm 2 output level.

As to temperature level, the "Hot Rod"(ref 4) or "Heat Capacity Mode" (ref 5) or Thermal

Inertial Laser" (ref 3) methods of operation .... all equivalent ,simply different names given to the same

concept-- has very reasonable upper temperature-level limits before the gain begins to decrease. Figure

19 shows the centerline temperature rise after a single pulse as functions of the gain slab thickness and

pump pulse irradiance. Clearly, the more solid gain medium we have (ie the thicker the slab) the less
the temperature rise produces in the slab by the given energy delivery. The LLNL Beamlet laser and

others at LLNL used as models in this study pump in the region 0.2 to 2 joules of pump light per square

cm of slab surface area, have been successful cooling this energy density with active gas or liquid flows

for truly-continuous repetititve-pulse operation of Beamlet laser designs for the National Ignition

Facility (Ref 7 ). Figure 20 shows the successfully-demonstrated cooling rates on laser slabs at LLNL

and the operational laser slab optical pumping heat Ioadings at LLNL ( Refs 6 & 7), and the implication
for CONTINUOUS rep-rated operation of the Beamlet laser, and this bodes well for cool-down between

bursts for the "Hot-Rod" mode of operation. Using these pump fluence levels and gain slabs in the 0.5 to

2 cm thick region will produce small (0.1-1 °C ) termperature rises in the slabs for each pulse. This
temperature rise per pulse will allow 100 to 1000 pulses to be emitted from the UNCOOLED medium

until the temperature level of 350 K to 400K (ref 6) is reached, where gain reduction begins as well as

Stark level redistribution, resonant re-absorption and line spreading (mentioned in Figure 4 as

considerations) begin to become important (ref 5, where 390 K is recommended as an upper limit)

Conclusions

In the above, we have analyzed the optical performance of an uncooled solid state laser, and for

reasons of reliability of performance, have chosen a slab-geometry, flashlamp-pumped MOPA design.

In the pulse-width regime required ( 5-50 ns) the single pulse output fluences allowed by LLNL

demonstrations, but degraded for repped operation, allow reasonable-shaped MO pulses to be amplified

to the reuquireed energy level with little or no extraction-induced phase aberrations. Further, using
LLNL data on thermal gain limitations, 100 -1000 pulses should be extractable from the laser device
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belbre earn reduction and other spectroscopic effects begin in the gain medium. At this point, optical

pumpir_ and lasing should be ceased, and cooling beman to return the medium to its original state. The
analysis indicates that pump-nonuniformities and intrinsic gain medium nonuniformities wdl probably

be the limiting causes of beam phase aberrations, as well as those in associated optical elements---all of

which point to engineering design and perhaps adaptive optics to ameliorate those effects which cannot

be eliminated by quality control and good engineering.
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Target Acquisition for ORLON

Dr. James P. Reilly

Northeast Science and Technology

117 North Shore Blvd

East Sandwich, Ma 02537

508-833-8980

Introduction

The purpose of this section is to define the capability of purely-optical techniques to provide the initial

acquisition of the debris targets, with subsequent handover to the "pusher" laser system for causing its demise by

inducing de-orbiting.
We first repeat the target set definition to insure consistency with the other analyses performed by

ORION Team members. We then use MIT/LL Haystack data to produce a debris number density distribution,

this to be used in conjunction to the basic debris flux density, distribution derived by MIT. These two models (

number density and flux density distributions) are then used to obtain the requirements on a purely-radar system

as well as a purely-optical system to provide acquisition of all targets of interest ( currently estimated at between

30,000 to 100,000 in number) in the orbital altitude regions of interest to NASA.

Definition of the Target Set
As can be seen in Figure I ( ref. l&2), the 6 canonical objects of interest to ORION are varied in size,

shape, material, orbital parameters and optical properties. Since the majority, of the debris population is currently

believed to be Target Class A (the NaK spherical solids), we shall concentrate on the acquisition of these objects,

knowing that we will have to examine the robustness of the acquisition systems proposed for consideration as a

result of these analyses. Examination of Figure 2 shows a model for the current estimates of the population
distribution function (ie, the number densities of debris objects larger than a given size). Note that current

estimates indicate more than 100,000 objects in the 1 cm diameter object class analyzed here or larger.

Figure 3 ( taken from MIT/LL presentation at the October 1995 ORLON review) show the actual

measures counts per hour as well as the derived flux of objects larger than 1 cm in diameter through a stationary

HAYSTACK beam set up with a 1 millirad FWHM beam divergence, pointed vertically. The data was plotted by

MIT in 100-km-high altitude bins from an orbital altitude of 300 km to 1500m. As a check on the total detection

rate quoted by MIT for the 300-1500 km range, the mean flux of objects through the cylindrical measurement

area would have to be given by :

6 objects / hr
Flux = = 1.4x105

nx 1 km x 1200km

objects / m 2 - )'ear

which is in good agreement with the general scale of detected objects shown in Figure 3.

Ref. 1 ORION review, 16 October, 1995

Ref. 2 ORION review, 12 December, 1995
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Target:

Description

A B C

Na/K carbon MLI

sphere phenolic

D E F

crumpled steel tank
aluminum rib

support

steel tank

inclination, deg 65 87 99 30 82 60

apogee, km 1020 930 1190 1020 800 1500

perigee, km 870 610 725 520 820 980

Area/Mass, cm Zlgm

actual size, cm

actual mass, grn

periodicity, sec
surface

Bond albedo

% of population

1.75 0.7 25 0.37 0.15 0.13

I 1 x 5 0.05 x 30 I x 5 1 x 10 100xl00x0.2

0.45 28 28 54 65 75,000
--- 10 0.2 1 -- 30

metal quasi / dielectric / charred / metallic metallic

metallic metal shiny
0.4 0.02 0.05-0.7 0.05-0.7 0.5 0.1

40% significant significant

Figure I : ORLON target classes : identification and important characteristics

If, on the other hand, we assume a total ofN = 100,000 such objects orbiting the earth in a spherical shell

of thickness AH and extending from an orbital altitude H of 300 to 1500 kin, and uniformly filling the shell, we
would expect a mean flux Q ( ie, objects / m2-year) averaged over the entire shell to be m_'en by:

Q

N (objects) x V ( orbital velocity)

4 rt ( Rc_h + H )2 (All) (ie, the shell volume)

100,000 objects x 7 km/sec

4 r_ ( 6378 km + 950 km )2 ( 1200 km)

= 2.7 x 10 .5 obj/m2-year
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This value is sufficiently close to the measured detection rate by HAYSTACK that the uniformly-filled
shell (or more accurately, layers of uniformly-filled shells) debris-distribution model will be used here to

investigate alternate Radar and Electro-Optic ( EO ) detection strategies in the following sections.

We can use this uniformly-filled but layered-shell model to evaluate postulated search strategies for
acquiring a major fraction of the debris population in a reasonable
(for example, less than one year) time.

Figure 3 shows the measured flux Q of space debris objects larger than approximately l cm diameter vs
orbital altitude ( in 100 km altitude bins) as estimated from HAYSTACK data ( the details are described in the

next Section). Using the above discussion, we can estimate the effective 3D inter-object spacing between debris

objects in this altitude region, as well as the projected 2D inter-objects spacing betaveen those objects.

The "snapshot" 3D spatial distance between objects is of use to estimate the instantaneous line-of-sight

mean separation between debris objects as well as the instantaneous azimuthal separation between those objects

for a acquisition systems with high-resolution LOS range resolution and high angular resolution pulse, such as a
laser radar or high-resolution microwave radar. The mean azimuthal 2D spatial distance is of use to estimate the

an malar separation between objects for acquisition systems x_fith poor LOS resolution and good angular
resolution, such as passive (or quasi-CW active optical illuminator) systems.

The "snapshot" 3D spatial distance between objects can be obtained simply by tasking the measured
detection rate ( Q ) of objects larger than I cm diameter and dividing by the orbital velocity at that altitude. That
is, since

Q (objects/sq. meter -sec) = n ( objects / cubic meter) x V (meter / sec)

and since

n (objects / cubic meter) = 1 object / [ 4/3 x (S (radial separation, meters)) 3 ]

we have

S ( 3D radial separation, meters ) = [rc 3/4 ( V / Q )033 ]

Likewise, we can radially project the population of the debris belt and find a mean expectation value for the 2D

separation. The total number of debris objects in a thin shell of thickness A H is

N (objects) = n (objects / cubic meter) x 4 zt [ Rc.r,h + H (orbital altitude )]-" x A H

We can projects how many of these objects will appear on a sensor pixel at any _ven time by projecting the
radial distribution of debris objects onto a plane, and the calculating the mean 2D radial spacing k of the

projected images. This will be a measure of the mean radial spacing seen bv a sensor system with poor LOS

resolution and good angular resolution. Equating the total area occupied by these particles to the surface area of
the shell at the orbital altitude of interest, we get

N rt/4 k 2 = 4 rt [ Rearth + H (orbital altitude )]2

and substituting the prex;ious equation relating N to n and A H, we obtain an expression lbr the 2D projected
azimuthal separation :

L =[4/re V /AHx Q ]05

The characteristic 2D separation L in 100 km thick altitude bins in which the MIT data was reported,, and the

characteristic 3D separation S also in 100 km thick altitude regions, are plotted in Figures 4 & 5. Note that at
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NST
Northeast Science and Technology

HAYSTACK Debris

Measu rements

1E+ 1

1E+0

1E-3 _

altitude H, km

3.0E-05

11Local flux of
j......................................... :.....'-. detectable

objects, derived
" from above data

1.0E-05

5.0E-06

0.0E+00

,_ 2.5E-05

_P _" 2.0E-05

!i

mean orbital albtude,km

FIGURE 3 : HAYSTACK measurements of debris count vs

altitude in 50 km altitude bins and derived flux

of objects into cylindrical beam

detect'n.xls
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the orbital altitude where the highest debris density is expected from the HAYSTACK measurements, the mean
3D spacing between debris objects is on the order of 100 km apart, in which case we could estimate a lower

bound for detection as 100 km / 7 km/sec = 14 sec between object-detections. Since however the cylindrical
measurement area of the beam has a diameter only 1 km wide azimuthally, it is much narrower than the lateral

spacing between objects in our model, and so the time between two detections could be as long as 100 (ie, 100
km lateral particle spacing / l km beam width) times the 14 seconds, or 0.39 hours. Hence the LOWEST

detection rate for debris in the high-density orbits would be 2.6 detections / hour. This is consistent with the

HAYSTACK measurement of 6 detections / hour. The model is within a factor of about 2 of reproducing the

HAYSTACK results, and gives us a more general tool to examine detection techniques and strategies.

As an example, a general search over the entire 300 to 1500 km altitude band set up on the basis of the

TOTAL number of objects expected ( nominally 100,000 ) spread uniformly over the band would expect the

objects to have a 3D spacing of about 125 km, and a 2D separation of about 50 km. As seen on Figures 4 and 5

The beam sizes and scan rates so determined would find it very difficult to search the lower altitude region

( where the debris density is far lower than the ensemble mean), and would produce much higher detection rates

than expected in the high-debris-density region around 1000 km. For example, a narrow beam passive optical

system (ie, one with no range resolution) searching for debris in the 400 - 600 km altitude region would, from
Figure 4, want to have a search Field Of Regard with a radius of about 200 km, and it would scan inside that

radius with a Field Of View set by debris signature Signal-to-Noise and Signal-to Background ratios with
optimized integration times and scan patterns. These will be discussed below.

General Discussion of Acquisition Approaches

In general, acquisition of remote objects for observation and tracking is accomplished by the observation of

either self-emitted or reflected optical energy, RF energy, acoustic energy or other quanta in comparison to some

background level. In particular, only optical and radar sensors are usable to acquire ORLON targets. The three

approaches below are ones which currently appear to even have a chance, given the slant ranges, object sizes and
sensor characteristics involved.

I. a microwave radar - with characteristics similar to the MIT/LL HAYSTACK radar, but with a scanned

beam (repeated linear one-dimensional scan) or a "bow tie" (repeated two-axis scan).

2. a passive optical system - an astronomical-class telescope perhaps with an angle-scanning capability along
the lines suggested by MIT/LL for a modified HAYSTACK-type radar. The illumination of the objects would

be by sunlight. The size of the instantaneous Field of View of the system fixes the instantaneous spot size
being viewed, while the angle-scanning capability determines the search Field of Regard.

3. an active illuminator laser system - economy dictates that if this option is chosen, the transmitter would use

the Pusher laser as the energy source, but would use a de-focused beam to interrogate a large spot in space
for the detection function.

In the sections below, we discuss in detail the driving parameters for each of the above approaches, and using

experimental data and demonstrated characteristics of operational hardware, suggest approaches to acquire and
track the ORION target set debris objects.

Summary of MIT / LL's All-Radar Acquisition Approach

The all-radar approach has been extensively analyzed by MIT/LL during the course of the first phase of

ORION. A radar system with beam parameters similar to those existing at the HAYSTACK facility is required

for detection, acquisition, identification, track and handover to the "pusher" laser system. HAYSTACK has been

used by NASA to detect, acquire, identify and track space debris objects down to approximately 1 cm diameter

at orbital altitudes from 300 km to over 1500 km Using HAYSTACK in a staring mode at 0 ° zenith angle ( ie,
90 ° elevation angle) with 1 millisecond pulses, a 40 - 50 hz rep rate and a l milliradian FWHM beam

divergence, detection rates of up to 6 / hr were recorded on objects larger than 1 cm ( estimated from RCS data).
This means that 6 objects l cm in diameter or larger entered the beam with a measurement area of
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approximately 1 km in diameter (ie, 1 millirad x approximately 1000 km range) by approximately 1200 k m high
(ie, 1500 km max. altitude minus 300 km min. altitude). Since the length of the radar pulse used was 1

millisecond, the length of the "slug of light" moving along the radar line-of-sight (LOS) was 300 km, hence

range resolution is only on the order of 150 km in LOS. At orbital velocities of 7 krr_'sec (appropriate to the 300
to 1500 km altitude range), the stay time of a debris object in a 1 km wide beam is no longer than 0.14 second, so

one would think that high PRF's could be used to yield more data when a debris object entered the beam.

However, since the round-trip time between the transmitter and the debris band was only 2 millisec ( Ibr 300 km

altitude) to 10 milliseconds (for 1500 km altitudes), PRF's less than only 100 hz were allowed without "blinding

" the received signal with the next outgoing pulse.

The achieved total detection rate of 6 / hr is too low for ORLON, especially considering the fact than

about 50% of these will be climbing toward zenith (and hence a candidate for the Pusher laser), but 50% will be

expected to be descending from zenith ,and so are not candidates. In fact, at a useful detection rate of 3/hr, it
would take 33,000 hrs (4 years at 24 hrs/day, 365 days/years of dedicated operation) to detect 100,000 debris

objects of interest, EVEN ASSUMING THERE WERE NO REPEATED DETECTION OF THE SAME
OBJECT ON SOME SUBSEQUENT PASS OVERHEAD. Clearly, a different approach is required.

MIT has proposed that another approach to the use of the radar be considered to dramatically increase
the detection rate : that of a "picket fence" rather than a stationary staring beam be used, along with a longer

pulse, to increase the measurement area from the single-beam l km x 100 km to one _ith 10 km (or more) x 100

km.

In the picket fence ( or as MIT/LL terms it, the "bow tie" mode) the beam would scan the sky at its
current scan rate so that effectively 10 or more angular beam positions are used to define a broader area through

which the debris must pass. Sincethe debris orbital velocity is on the order of 7 krrt/sec, and the inertial velocirv

of a staring radar beam at the debris altitude is only on the order of 0.5 km/sec (inertial velocib' = earth rotation

rate x earth-radius-plus-orbit-altitude), it is appropriate to scale the measured entrance rate of detectable debris

from the existing HAYSTACK data to the debris entrance rate into a beam "array" linearly with the measurement

area interrogated by the beam.

The fence would be erected not at zenith, but rather at a low elevation angle, perhaps at 30 ° elevation or

less, to allow subsequent time for handover to the Pusher laser and for impulse deliver3. prior to debris reaching
zenith. At I000 km orbital altitude, the 1 millirad beam with 30° elevation angle would be approximately 2 km

wide. A scan pattern 10 beams wide increases the azimuthal size of the area from the prexious 1 km (one vertical

beam) to 20 km (10 osculating beam positions each 2 km wide), and using the longer-pulse option (ie 5

millisecond, not 1 or 2 ) gives higher S,'N ratio for increased delectability and tracking precision. Figure 6 shows

the benefit of this approach to object detection, which reduces to total detection time down to a few months.

Figure 6 uses the recommended 20 hr / day operation suggested by MIT.
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Figure 6: Total Detection Time is Faster with Scanned RADAR Beam Concept

The HAYSTACK 120 ft. diameter antenna is capable of a sustained angular velocitv of 35-40
" _ " , ')mi!!irad/sec and angular acceleratmns of 3_-40 mdhrad/sec-. Radar antennas can be built to haveeven hial_r

rates. MIT/LL indicates that the ALTAIR 150 ft diameter radar antenna lJas anmalar velocmes anaacce[eranons

five ( 5 t! ) times those of HAYSTACK. With the HAYSTACK rates, the antenna could complete a 10-non-
overlapping-spot scan (10 x i millirad) and return to its original beam position in:

t_t_ = 2 x 10 millirad / 37 millirad/sec = 0.54 sec

A higher scan rate ( and/or using a scan doctrine with overlapping beam positions) would ALWAYS allow the
radar to return to the original spot BEFORE A DETECTED OBJECT HAD LEFT THE MEASUREMENT

AREA, since the transit time of an orbital object at these altitudes across a stationary 2 km-diameter beam is •

t_,,it = 2 km / 7 km/sec = 0.28 see

A higher scan rate ( say 50 -75 millirad/sec - still substantially less than that of the ALTAIR radar's 150-200

millirad/sec angular velocity capability) would allow return interrogations prior to the debris leaving the scan
region, which would be useful for verification, further discrimination and increased tracking precision.

General Discussion of the Acquisition Approach and Requirements

As we discussed above, the search rate must be such as to detect, acquire, discriminate and hand over a
debris target in a time no longer than it takes the object to climb say less than about 20 ° or 30 ° toward zenith

from its original detection elevation angle. Because we are discussing ground-based systems (or at best

elevations less than or equal to that of the AMOS facility in Hafvaii -- ie, 10,000 ft above mean sea level), the
optical system will not be able to operate much below about 10° to 20 ° elevation angle. This set of practical

limits however still allows the Pusher laser a range of elevation angles from about 40 ° or 50° all the way to 90 °
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to accomplish its impulse delivery function --a maximum of about 20 to 30 seconds. This will be important in

helping to scope the required ener_ level, spot size and pulse repetition rate required of the Pusher function for

the ORION laser.
The detection, acquisition and discrimination function co.uld be accomplished by:

1. a microwave radar - with characteristics discussed above, similar to the MIT/LL HAYSTACK radar, but

with a scanned "picket fence" (repeated linear one-dimensional scan) or a "bow tie" (repeated two-axis scan).

"_ a passive optical system - an astronomical-class telescope perhaps with an angle-scanning capability, along
- the lines suggested by MIT/LL for a modified HAYSTACK-type radar. The illumination of the objects would

be by sunlight. The size of the instantaneous Field of View of the system fixes the instantaneous spot size

being viewed, while the angle-scanning capability determines the search Field of Regard.
3. an active illuminator laser system - economy dictates that if this option is chosen, the transmitter <vould use

the Pusher laser as the energy, source, but would use a de-focused beam to interrogate a large spot in space

for the detection function.

The size of the interrogated spot, the rate of active interrogation (by either the illuminator laser or by the

microwave radar) and both the spacing and the number of objects expected to be present scales the total time to

detect the objects.. For example, the HAYSTACK radar, in the mode used for NASA for the detection of 6

objects/hour, used:
1. a stationary beam at 90 ° elevation angle

2. a beam divergence of I milliradians FWHM

3. an interrogation range of from 300 km out to 1600 km

4. a pulse repetition rate less than about 50 hz

For these conditions, the beam was about 1 km in diameter (FWHM points of the intensit3. _profile). The orbital

velocity at 1000 km is about 7 km/sec, and so the stay-time of a potential debris particle is less than 1 km / 7
km/sec = 0.14 sec. At 50 hz, the radar can illuminate the object up to 7 times, making for a more precise

determination of tracking data, but at the same time slowing up the detection process. Substantially higher PRF's,

however, can NOT be used because the round-trip time limits the PRF to less than 100 hz beyond which the

return signal from the debris is "blinded" by the next outgoing radar pulse. This would not be the case if separate
transmitter and receiver dishes were used, but these instruments are extremely expensive, and the option is not

considered further in this discussion.

Dividing the surface area of the spherical shell of debris around the Earth at an altitude of 1000 km by the

area of the 1 km radar spot gives 8.7 x 10s such spots. If the radar or laser illuminator tried to interrogate _,ch of

these 1 km spots WITH JUST ONE PULSE at a PRF of 50 hz, slewing to a new angular position between each

and ever3' pulse, it would take 1.7 x 10 7 seconds, or abom 6 months. In reality, 2 or 3 "hits" are required to

verify detection and to acquire even a rudimentary velocity vector for handover, so the required time to cover the

sky is 1 to 2 years, 24 hrs each day, 365 days each year. Note that at these conditions, the required overall sle_
rate would be smoothly moving one full beam position (I miilirad ) in two-to-three interpulse times ( 2 to 3 x

1/50 of a second ) or 15-25 millirad/sec. This is NOT impossible, since the 150 ft diameter ALTAIR radar dish

has a slew rate of up to 200 millirad/sec, and even HAYSTACK's slew rate capability, is 40 milliracL_sec. The

angular rate capability of large optical systems is even higher (see Figure 7 ).
Clearly, the way to shorter total detection times is with larger measurement volumes, either with large

single-pulse beams (which may.require high energy pulses) or with slewed beams (which require controllable-

slewrate beam directors) for either radars or laser illuminators. The total detection time T*, interrogation rate co

(new beam positions per sec), pulse repetition frequency PRF, single-pulse interrogation area rt/4 d_2 , debris

altitude H and total number of debris objects N, can be related by the following simple equations:

1. For solar illumination or irradiation by a CW radar or laser illuminator ( ie, no range information, just

angular resolution), the characteristic time to search the entire sky with no repeat-interrogations is "
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4n steradians / FWHM beam resolution angle (sterradians)

CI,_._

[to (new resolved spot positions/sec) ]

A homograph of this equation is presented in Figure 8, including also the stay time of a debris object in the

resolution angle as a function of orbital altitude ( ie, orbital velocity) and resolved spot diameter at altitude

tstay = dspot / Vorbit

and also the time elapsed for a slewing receiver to move one spot width (ie, the time betnveen completely new

measurement areas)

t_,,_tch= FWHM resolution angle / receiver slew rate

We'll discuss Figure 8 further in a later section, but for now we can point out a few things of interest. The Figure
shows that the HAYSTACK radar beam divergence is I millirad, and so produces a 1-km-diameter spot ! 000 km

range. The stay-time of an orbital object in that beam at that altitude is no longer than 0.14 seconds, allowing
lots of pulses to illuminate it and provide better information. Since the HAYSTACK has a maximum slew rate of
about 40 millirad/sec ( 0.04 racFsec), it COULD be used to search the complete sk-y in about 90 hours of

operation ( in 4.5 days of 20 hr/day operation). In such a mode of operation, the time the beam would take to
move one millirad would be about 0.025 seconds, and so would take a "snapshot" of the debris content of that 1

milliradian solid angle. There would be a low probability of an object entering (or leaving) the measurement area

before the beam moved on.

2. For active irradiation with a repped-pulse radar or laser illuminator ( ie, with both range and angular

resolution) the characteristic time to search one range of orbital altitudes with REPEATED interrogations is:

surface area of specific debris sphere [4n (P_mh +H) 2] / beam area [n/4 d2spot]

Tp* =
to (new beam positions / sec) [= PRF / 3 ("hits" per beam position) ]

the resolved measurement area. We have assumed here that t_ee (3) pulses are necessary. This relation is

virtually identical to that for a CW sensor, with the exception that the RP sensor does not have the advantage of

collecting return photons during the entire stay of a debris object for the required measurement accuracy, so the
RP laser or RP radar illuminator has an interpulse time which is 1/3 that of the time it takes the beam director to
move to a brand-new measurement area ( ie, the illuminator PRF is equal to 3 x the beam director's "new

frame" rate, or PRF = 3 0_po_( ie, _pot / H) / S ( ie, slew rate) ). The RP version of Figure 9 is shown as

Figure 9.

As mentioned above, the stay-time of a debris object in a given beam is NO LONGER THAN _pot/Orbital

velocity ,and is usually ( ie for a 1 km diameter spot and 7 km/ sec) relatively long ( 0.1 to 0.2 seconds). Hence

rep rates of 5 - 10 hz are required at a minimum to insure 3 "hits" per transit of a debris object through a

stationary beam with a diameter of 1 km. If, as the Figure assumes, the beam is slewing, higher illuminator

PRF's are required, as we shall discuss in great detail in a later section. We assume here that the receiver dish is
co-located with the transmitter dish ( for economy, one dish will probably have to serve both transmit and receive

functions) and so the round-trip time of a pulse from transmitter to debris orbit back to receiver must also be
factored into the choice of PRF. Since the round-trip time is in the range :

81



)

01
._=
=-

o

u
em

.Q
m
Q.
m
(3
C
0

em

mm

sm

O"
(3
<(

=o

82

÷
LU

E

UJ

=

0

0
UJ

(n

x

"Io



_S
L_

ii

itl
1-
41
I#1

i
ii

.Q

Q.

ib
C
0

ii

ii

lil
iiiI

ib
<

I.l

.!

;I!:

: l!

' L+it
i

i
t

, i

21
, i I

;i

i:ll
, ,

"7

.;.a-

-i

Ii

-M-

i'

,--t-

:ii
:l

!t
i

W

÷
I.U

, _ _ UJ

, !

P I

,+ I
e I

: !

Immmmm

i_'_ L

I

: 1

il
+

!

O

E

:g
O

O

83



from
to

minimum round-trip time = 400 km x 2 / 3E8 m/s = 5 millisec = 1/(200 hz)

maximum round-trip time = 3000 km x 2 / 3E8 m/s = 40 millisec = 1/(25 hz)

and the laser illuminator pulses are short ( the HAYSTACK radar has pulses of 1-5 millisec, and the postulated

Pusher laser has 100 ps to 100 ns pulses) there should be little or no overlap "blinding" of the weak incoming

reflected signals by the strong outgoing pulse. However, the hardware should be protected by gating closed the

receiver during the transmission pulse, and slightly increasing the illuminator PRF (by say 30%-40%) to
compensate for the potential of lost information during the "receiver-closed" period.

3. Picket Fence analysis for debris acquisition

As discussed above, MIT/LL has suggested the use of a HAYSTACK-type radar in a scanning mode to

increase the effective measurement area for detecting debris, and so to decrease the total time for detection of a
large majori_ of the estimated 100,000 dangerous debris objects. In section what follows, we took the

HAYSTACK detection data, and its estimated local debris flux Q (objects / sq. meter per year) vs altitude ( in

100 km bins from 350 km to 1600 km orbital altitude), and computed characteristic 3D separations between

debris objects assuming uniformly-filled spherical shells 100 km thick over this altitude range. Using this

information, we can calculate the time required to detect N objects above 1 cm in characteristic diameter by the
following simple relation

N (total no. of objects estimated to exist in shell AH thick at altitude H)
T* =

Q (objects/sq meter per yr.) x (M d_pot ) x AH

where M is the number of side-by-side F_q-IlVlbeam spot diameters making up the picket fence, d,r,>, is the
instantaneous FWHM diameter of the actively pulsed and slewed illuminator beam itself, and AH is the Line-of-

Sight range bin used for data reduction (100 km for the HAYSTACK data). The above is plotted as a 4-box
nomogragh in Figure 10. The Figure shows that:

1. Searching with a single beam ( Fence Area = 1 km diameter x 100 km high data bin) would take years, even
in the highest-density debris region.

2 Searching with a MIT/LL "Bow Tie" pattern (a version of the picket fence) only I0 beams wide drops the
search time to about 1 year, using MIT/LL's 20 hr/day estimate for usefid search time Since the beam needs

only one back-and-forth sweep to get data from ALL altitudes, the entire 300-1600 km altitude region can be
surveyed in about one year of continuous 20-hr-per-day operation.

3. Searching the lower altitude (very-low-density) region of 300-500 km would take about the same time

(ie, less than one year), even though the total number of objects in this region so low. This is because the

arrival rate at the measurement region is correspondingly low.

4.Passive Optical Acquisition

The concept of using reflected solar radiation to detect and acquire the debris is an attractive idea, since

the illumination (while weak) is continuous This section evaluates its use along with existing telescopes and
focal planes to find, track and handover the selected ORION targets to the Pusher laser.
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The reflected radiant intensity (watt / steradian) from a diffuse sphere with reflectivity-area product

rAsph illuminated by the sun, is given by:

rAsph 2

Isph (W/sr) - ( sine + (n - o" ) cos o ) Esu, (W / cm 2)

n 3n

where a is the angle between the detector optical axis and the sun. At o = 90° (equivalent to a "half-moon"

configuration as viewed by the sensor) the above reduces to

Isph (W/sr) -

rAsph

Es_ (W / em 2)
.)

1.5 r:-

at o = 90 °

Thus, the signal photons on a pixel are:

Nsig = Isph (W/sr _tm)

Arcvr tinteg

A)_ Topt Tprop

R 2 hv

where it is assumed that all the signal photons collected during the integration time tint_
by the receiver aperture Arc,+ are collected by a single pixel.

The sky photon counts on this same pixel are given by:

d 2pixeI tmteg

Nsk_.. = Isk._+(W/sr-cm2-_tm) Arc,.r A_. -- Topt

f2 hv

The signal and sky background photons count numbers per integration time must be multiplied by the detector

quantum efficiency "FIQ E to get the electron counts per integration time.

The pixel-with-target output is then approximately N_,+ + N_k_and the photon sisal -to-noise ratio is
given by

(Nsig + Nsky ) - Nsk_
SNR =

sqrt [(Nsig + Nsk+. ) + Nreacl 2 ]

where the readout photon noise Nreaa = CCD readout noise electrons per readout / T']QE. In astronomical
telescopes this has been driven down to only 4 electrons per readout using cooled ( - 40 C ) systems, but typical

good fielded-sensor noise levels are up at 8 - 12 noise electrons per readout. Quantum efficiency of detectors in

the visible region of the spectrum for commercially-available detectors is 65 %.

The signal-to-background ratio ( determining the noise - free contrast of the signal against the background
) is defined as:

86
SBR =

(Nsig + Ns_+. ) - Nsk-:,.-

N_k'y



These two sensor criteria are sketched in Figure 11.

Typical values for the parameters of the debris spheres, the solar source and the skT background, along

with those of the optical telescope's photon collection characteristics as well as those of the sensor's detector

elements at the focal plane are listed in Table 1. These values were used to scope the application of various

sensor / telescope combinations in acquiring and tracking the solar-illuminated debris objects, using SNR and
SBR as simultaneous criteria, and varying sensor parameters to achieve acceptable levels of both SNR and SBR

simultaneously.

Figures 12, 13 and 14 give the results of these calculations. These three Figures all display the following

information, calculated from the above relations and parameter values :

1.
2. Number of signal photons received during the integration time from the 50% illuminated diffuse sphere,

3. SNR (signal-to-noise ratio) for both full daytime sky background, as well as for full moonless-night skT

background,
4. SBR (signal-to-background ratio) for both full daytime sky background, as well as for full moonless-night

sky background,
On-Chip Binning integration times-that is, the time the image spends on a single 40 micron detector, on a

"binned" array (really a macro-pixel) of 10 x 10 and 100 x 100 detectors. In addition the stay-time of an orbital

debris particle in a l-kin-diameter spot at altitude is shown ( 0.14 seconds)

Inspection of the three Figures:
Figure 12 --

Figure 13 ---

Figure 14 ---

400 km slant range

1200 km slant range

3000 km slant range

shows that the really difficult problem with sun-illuminated ORLON targets is SBR, or signal-to-background (ie,

contrast). SNR can be made high enough to satis_ most data acquisition and data reduction systems / techniques

by varying integration time between readouts, requiring the "on-chip-binning" approach suggested bv MIT/I.L.

Looking at the plots shown in these three Figures, we find that detection during full daylight using sun

illumination is extremely difficult, if not impossible due to the bright day-sky optical background:

400 km slant range -- full daytime: SBR = 5E-4

1200 km slant range -- full daytime: SBR = 5E-5

3000 km slant range -- full daytime: SBR = 8E-6

while searching at Dawn or Dusk with a sun-illuminated target against a dark sky background produces

extremely high contrast ratios ( or SBR's) •

400 km slant range -- full night-sky SBR = >IE20

1200 km slant range -- full night-sky SBR = >1E20

3000 km slant range-- full night-sky SBR = >lE20

In addition, the Figures show the strength that on-chip binning adds to the passive detection technique. Signal-

to-Noise ratio rises as the square-root of integration time, and with a dark sky background (all but eliminating

sky-generated photons), the only serious noise sources are read-out noise and shot noise. Longer integration
times mean more signal photons into the receiver aperture, and hence more shot noise, but on-chip-binning

allows all these photons to be collected on an adjustable-size "macro-pixel", which produces less readout noise

when the pixels are read out as one "macro-pixei" instead of as individual units. Including all these noise sources
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Table 1

Debris, Illumination and Sensor System Characteristics for Sun-Lit Search Calculations

i '

Debris Sphere 'shape spherical

:diameter 1 cm

surface diffuse
........................................................................................

:diffuse reflectivity 0.5

specular reflectivity 0

Solar Source irradiance in visible (0.4-0.9 microns) 0.2 W/cm2-micron

Atmosphere one-way transmission 70%

Sky Background _daytime, no aerosols, no clouds : 1.0 e-4 w/cm2-ster-micron ref 3

!daytime, with aerosols, no clouds 2.0 e-3 w/cm2-ster-micron ref 3,4,5

15 min past sunset, no moon,no stars : :2 e-8 w/cm:-ster-micron ref 4,5

( 0.4-0.7 micron)

-1 " n .........2 e-I 1 w/cm--ster-mlcro ref 4,5nighttime,no moon, with stars

nightime, full moon, with stars 2 e-9 w/cm--ster-micron ref 4,5

Collection Telescope Effective Clear Aperture Diameter 3.5 meter ................

Visible transmission to focal plane 70%

f30 (112.5 meters)Focal Len_h

Maximum Slew rate 0.100 rad/sec .......

.... Maximum Angular Accelleration 0.100 rad/sec 2 .......

.............................
.......................................

Focal Plane Detector Wavelen_h Region 0.3-0.9 microns

: :Quantum Efficiency 659/°

Notch Filter Width 0.05 microns .........

Individual Detector Size 40 microns .....

N x M Array size 1050 x 1050

:readout noise : 10 electrons/readout

: D* not used in present calculation .......
IE-6 to 3E-2 sec; '_Integration Time .......... : ! ................

: iReadout Time le-2 sec

iFrame Rate :30 frames/sec

ref 3 " MODTRAN II AFGL, Phillips Laboratory, Hanscom AFB, Massachusetts 1994

ref4 • Infrared Handbook, ERIM, 1989 p 3-71

ref 5 • RCA Electro-Optics Handbook, RCA EO Div, Lancaster Pa 1974, p 62,68,70
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and dependencies, the three sensor-to-target range values considered here show that a single array, utilizing the

adaptive capability, of gan_ng pixels (to provide more signal photoelectrons for the same readout-noise
electrons ) can perform equally effectively with the same telescope and same detector chips in acquiring sunlit

ORLON targets.
Table 2

Capability of "On-Chip Binning" in Detection of Sun-Lit Debris

400 km slant range -- 1 single pixel has SNR -2
3 x 3 pixel "array" has SNR -5

1200 km slant range --10 x 10 pixel "array" has SNR -2
30 x 30 pixel "array" has SNR -7

3000 km slant range --100 x 100 pixel "array" has SNR -2
300 x 300 pixel "array" has SNR -10

At the 400 km range, the instantaneous-field-of-view of a single detector is the detector diameter / focal length

of the telescope's focusing optics. For the telescope design considered here,

0detector = 40 microns/l 12.5 meters = 3.55E-7 radians approximately

and the instantaneous-field-of-view of the array is simply the number of detectors in an array row or column

times that value •

0_,: = 0o_t_t,,r x N = 3.55E-7 x 1050 = 4E-4 radiansapproximately.

At 400 km slant range, the measurement spot area viewed by the entire focal plane array is 400 km x 0,_,,: =
400 km x 4E-5 radians = 160 meters in diameter. At 1200 km slant range, the spot is 480 m in diameter and at

3000 km slant range, the spot is 1200 m in diameter. Using a single stationary (non-slewing) position for this

beam to search the sky for debris would take an excessive amount of time, as is shown both in Figure 8 (ct:

"Stationary Beam" line ) and in Figure 10 (cf. lines at fence area of 0.7 - 1 km x 100 km) ---about 3-6 years. At

slew rates capable of tracking LEO satellites ( approximately 0.030 radians/sec or better ). the search time

reduces by at least a factor of l0 to a few months. The time to complete one full slew cycle, at a slew rate of.030

rad;sec is:

altitude beam spot dia fence slew time to

angle width rate complete
one slex_ cycle

200 km 4E-4 rad 160 m 100 km = .250rad .030 radsec 8.3 sec

600 km 4E-4 rad 480 m 100 km = .083 tad .030 ra6;sec 2.8 sec

1500 km 4E-4 ra6'sec 1200 m 100 km = .033 rad .030 rad sec 1.1 sec

it must be noted that in the above, we have not taken into account atmospheric turbulence

effects. The atmosphere is known to have integrated optical path angular fluctuations in

the 100-to 1000 hz frequency range, with a characteristic long-term RMS spatial coherence

scale ro of between 2 and 10 cm, depending on the altitude of the abserver, day or night

conditions, wavelength and wind conditions. This translates to a few microradians angular

amplitude uncertainty ( 5 cm / 30 kM), and may preclude the utility of single-pixel

detection (since a typical single-pixei FOV is on the order of 40 microns/40 meters focal

length) and may even compromise the data from a 10xl0 pixel "super-pixel" sub-array.
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Purely passive tracking using sunlit targets for ORION appears do-able out to slant ranges of 3000 km,

using slewed beams, current existing adaptive-optics telescopes, and "on-chip-binning" as a method of making
adaptive sensor focal planes produce high-contrast signals (high SBR) as well as high SNR signals. Although

searching is only possible for the total of 4 hours per day at dawn and dusk, the entire altitude range 300 -1600

km can be completely searched to acquire the (currently-estimated from the MIT/LL data) 100,000 or so debris

objects 1 cm or larger in diameter in a period of less than nine to twelve months at current slew-rate capabilities.

The follwing Figure, Figure 14-A shows that to detect all of the objects in any given altitude bin ( an hence all
the objects in all bins) in under 1 year requires a fence about 10 km wide at altitude -about .010 radian. At slew

rates of .030 rad/sec, acomplete raster scan would take 0.67 seconds, an easy task as can be seen in Fig 7.

5.Active Optical Acquisition using a Repped-Pulse Laser Illuminator

In the above sections, the validity of the passive optical acquisition system was established using sunlight

as the illumination and slewed telescope as a collector so as to provide as much detection area as possible,

leading to a total search time requirement less than 9-12 months. The active-slewing approach was necessary,

since the debris objects are only visible against a dark-sky background (ie at dawn and dusk) for a total of up to 4

hours per day. The advantage of an active repped-pulse laser illuminator is to provide illumination on demand,

not just at dawn and dusk as with the Passive Optical Acquisition system described above. The equations

describing the return signal photons are identical to those above, with the exception that the illumination is

single-frequency (the laser wavelength) not broadband (like sunlight), and that we have direct control on its
intensity and duration, via the illumination spot size and laser pulse width.

The reflected radiant intensity (watt / steradian) from a diffuse sphere with reflectivity-area product rA._ph

illuminated by the sun, is given by:

rAsph Tprop Elaser

It(W/SR) -

rt (rt/4) D2spot 17pulse

where Trlx, p Ela_ is the laser pulse energy transmitted up to the target through the atmosphere with transmission

Tprop, Dspot is the laser spot size chosen specifically for the search function, and T puJ_is the duration of the laser
pulse. Thus, the signal photons on a pixel are:

Nsig = Isph (W/sr)

Arcvr 1;pulse

R 2 hv
Topt Tprop

where it is assumed that all the signal photons collected during the integration time tt°teg
by the receiver aperture Ar_,, are collected by a single pixel.

The sky photon counts on this same pixel are given by:

d 2pixe I tinteg

Nsk,- = Iskv (W/sr-cm2-btm) Ar_,._ .A)_ -- Topt

f2 hv

where tint¢_ iS the integration time ( probably somewhat longer than the laser pulse width to allow for

uncertainties in arrival time and/or electronic response times).The signal and sky background photons count

numbers per integration time must be multiplied by the detector quantum efficiency TIQ E to get the electron
counts per integration time.
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The pixel-with-target output is then approximately Nsig + Nsk_ and the photon signal -to-noise ratio is
given, as it was above, by

SNR =

(Nsig -k- NsL._. ) - Nsk_.

sqrt [(Nsig + Nsk,, ) + Nrea,:t 2 ]

where the readout photon noise Nread = CCD readout noise electrons per readout / rh. In astronomical

telescopes this has been driven down to only 4 electrons per readout using cooled ( - 40 C ) systems, but typical
good fielded-sensor noise levels are up at 8 - 12 noise electrons per readout. Quantum efficiency of detectors for
1.06 micron commercially-available detectors is 65 %.

The signal-to-background ratio ( determining the noise - free contrast of the signal against the background
) is defined, as it was above, as:

(Nsic + Ns_,-,.) - NsL._-

SBR =

NSK'X ¸

These two sensor criteria were discussed previously, and are sketched in Figure 11.

Typical values for the parameters of the debris spheres, the solar source and the s_' background, along
with those of the optical telescope's photon collection characteristics as well as those of the sensor's detector

elements at the focal plane are listed in Table 3. These values were used to scope the application of various

sensor / telescope combinations in acquiring and tracking the laser-illuminated debris objects, using SNR and

SBR as simultaneous criteria, and va_ing sensor parameters to achieve acceptable levels of both SNR and SBR
simultaneously.

Figures 15, 16 and 17 give the results of the calculations for the number of photons captured by the 3.75 meter

diameter telescope. These three Figures all display the number of signal photons received during the integration

time from the laser-illuminated diffuse sphere,

calculated from the above relations and parameter values :

Figure 15---

Figure 16 ---
Figure 17 ---

400 km slant range

1200 km slant range

3000 km slant range

The calculations indicate that in order to receive back from the illuminated 1 cm spherical object a minimum of

l0 signal photons ( ie, an equal number to the number of spurious "noise" electrons generated by the readout

process on each detector), there is a trade-off between laser pulse energy,, laser spot size and slant range. These
are illustrated in Table 4 below.

Table 4

Charaeteristic Laser Spot Sizes and Pulse Energies for Detection

400 km slant range 100 joules

1000 joules
130 meter dia spot

500 meter dia spot

1200 km slant range 100 joules 50 meter dia spot

i 000 joules 180 meter dia spot

96
3000 km slant range 100 joules 20 meter dia spot

1000 joules 60 meter dia spot



Table 3

Parameters Used for the Analysis of an Active Laser llluminator for ORION Debris

i !

Debris Sphere ishape [spherical

!diameter

!surface

idiffuse reflectivity

ispecular reflectivity

iSolar Source iirradiance in laser band (1-2 microns)

I.- i

_1 cm

i I

[nighttime,no moon, with stars

'diffuse

: 0.5:
+

I 0

"1 o

0.01 W/cm--mtcron

!Atmosphere ,.one-way transmission 85%

Sky Background !daytime, no aerosols, no clouds i<1.0 e-8 w/cmLster-mlcron ref 3

(1-2 micron) !daytime, with aerosols, no clouds _5.0 e-4 w/cm"-ster-micron iref 3,4,5I ..........

_nightime, no moon,no stars <1.0 e-10 w/cmLster-micron iref 4,5
-- " " !1.5 e-10 w/cm2-ster-micron :,ref 4,5

Iref 4,5
nightime, full moon, with stars ]1.5 e-9 w/cm2-ster-mieron

: I i

,Collection Telescope iEffective Clear Aperture Diameter [3.5 meter

fIR transmission to focal plane _ 70%I .......

!f 30 (112.5 meters)Focal Len_h

iMaximum Slew rate i0.100 rad/sec

Maximum Angular Accelleration i0.100 rad/sec _"

[ i :

Focal Plane Detector_ Wavelen_h Region
t

+:;Quantum Efficiency

,.1.06 microns

i 20%1

N x M Array size
..................... -- ........ _ .......

: readout noise

i Notch Filter Width 10.05 microns

t Individual Detector Size 140 microns

inot required for present calculation ........

• 10 electrons/readout

!D* inot used in present calculation

!Integration Time _1E-10 to 30 see _

'+Readout Time not used in present calculation

Frame Rate not used in present calculation

ref3 • MODTRAN II, AFGL, Phillips Laboratory., Hanscom AFB, Massachusetts, 1994

ref4 " Infrared Handbook, ERIM Handbook, ERIM, 1989 p 3-71,72,73

ref 5 • RCA Electro-Optics Handbook, RCA EO Div, Lancaster Pa 1974, p 62,68,70
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The SNR (signal-to-noise ratio) for both full daytime sky background, as well as for full moonless-night sky

background, as well as the SBR (signal-to-background ratio) for both full daytime sky background and for full

moonless-night sky background is shown in Figures 18, 19 and 20. Because of the variation of the spot size /

pulse energy requirement with slant range, we choose a spot size characteristic of each of the slant ranges above.
Since the laser illuminator spot is truly a quantity which can be varied from pass to pass of target objects, this is a

valid exercise to help choose the required pulse energy and hence size the laser device hardware required

Table 5

Characteristic Spot Size Requirements for SNR > 1

Along with Target Stay Time in Spot ( Spot Diameter / Orbital Velocity)

Figure 15 --- 400 km slant range ---300 meter dia spot --<0.040 sec stay time in spot

Figure 16 --- 1200 km slant range --- 120 meter dia spot---<0.019 sec stay time in spot

Figure 17 --- 3000 km slant range ..... 40 meter dia spot .... <0.007 sec stay time in spot

Inspection of Figures 18, 19 and 20 rapidly shows that signal-to background ratio (SBR or contrast ration) is

not the problem we face here .... it is signal-to-noise ratio SNR. At energy levels below about 300 joules per

pulse, the SNR is always less than unity, and only is above about 2 at energy levels above about 1000 joules per

pulse, using this small receiver dish (3.75 meters). Our attempt to adjust integration time has no effect, and

actually HURTS the SNR for pulses longer than about 1 microsecond. Table 5 above shows the spot sizes

required for this 1 kilojoule active illuminator (min energy for SNR > 1). In addition ,if we detect a potential

target debris object in the spot, we would like to hit it at least 3 times to build confidence that it is a real object
and not a spurious signal. Table 5 also shows a rough estimate of the maximum time a debris object will stay in

the beam (spot diameter / orbital velocity), in order to estimate the burst-mode capabilib" the illuminator should

have, to provide not only repped-pulse active scanning but also a burst of pulses to provide low false-alarm and

high detection probability data that that given by a single return. A burst rep rate capability of 75 hz (i.e., 1 /

(.040 sec / 3) to 425 hz ( 1 / (0.007 sec / 3) may be required of this i kj or greater laser used as an illuminator.

We conclude that initial detection by active illumination of the small 1 cm diameter debris objects in the

orbital altitude region of interest 200-1500 km, with a 3.75 meter receiver dish at an elevation angle of 30 degree

is not very effective for small laser pulse energies. At laser illumination energies above 1000 joules, however, the

concept does become effective, but with small 40-300 meter diameter spots for the 400 - 3000 km slant ranges

required. It would probably require pulse rep rates in excess of a few hundred hertz. If we now wish to use such

a system (pulse energies above 1 kilojoule, 3.75 meter collector dish, pulse durations less than 1 microsecond ),
then in order to survey the entire sky and acquire the estimated 100,000 objects in less than 1 year, the picket

fence approach discussed above for the radar and passive-optics approach must be used. Figure 21 is a

nomograph which calculates the side-to-side scanning requirements for these small (40-300 meter diameter

beams. This Figure shows that in order to achieve the required sky coverage over the altitude region of interest

requires a scan width of 1 beam dia by about 50 km, or about 100 to 1000 beamwidths. Table 6 below shows the

angular side-to-side scan angle requirements as functions of the altitude being searched with a 1 kj laser

(SNR> 1 ).
Table 6

Lateral Width required for the EO Picket Fence

altitude required beam scan width lateral scan lateral scan

spot angle required width angle
diameter D / R M D M D MD x D/R

200 km 300 m 1.5e-3 50 km 167 beamwidths 0.206 radians

600 km 120 m 2.0e-4 50 km 417 beamwidths 0.083 radians

1500 km 40 m 2.7e-5 50 km 1250 beamwidths 0.034 radians

101



½

b

102

¢o oq

+ @ 4-
uJ ILl

8 8 o(21

o!_eN eSlON/ leu6!s

o
o
+
u_
o
o



o

_ _ _

103



x

o

e-



3

LL

I_I I,_

I= 0
,m 1_I

-+i,,P-,

I=
O)

IL

Q

E
- +=

,,,=:
ta

iP.
"o

P.,
I=

ta
t_

gi

+ ,t. . + ,c_ [ k + :

..iIi_ c +
,,--; ',+ .+ , ",_N! !!i N!!!!

lllll+_+'
= r ,:I _ It I\ lit I

,_ i+l+lll - ,_ '+......I_ _ +, i .... I i If'., ._ i,++,+_tll'++L_ '.-

,,, s l+__.,:+ ;
.... - ...... "t ,.- ___+o ,

...+.......I+++ _iii i'N

,_ .: ,++,,, _ '. ,.. ,,,
.... _ itll _ i,,- i _ +"

W - II $ qo|q), uJN 001,

u! epn3ille leOOl 1,_ si=e.l'qo jo J_l:ltunu

o

B
c_

jelA ,ed JO:l,eW, bs/,ia_.l'qo

O eleJ le^.ml le:)Ol

-.,.,..

I=
o_
r,

"o

4,..*

E
o
o

Q.

t-
O

_a

.3
"o

u:

_,,,lii'' i'¸¸_, i'
_iiiii --

_ : _ , i i _ .-_

i c: /"

m I ,/iiP_ Itl!l

_.j, _:,,ltl!_!l I "

IIU IIU U,I UJ

jeeA Jed m-bs I _=ei'qo
1_ 'eleJ ll^.uJe leOOl

OOZ_

oog_ E
.:1:

00gl. ::E
{1:,

O01. L _

006 _

ooz
oOOG

OOg

++i+

p,; "+

++ll
;+i ,._

+

Ki::

u! sloa.rqosuqep jo jequJnu leOO'l

OOZb E
,,,e.

OO{JI. :E
00_.

2
OOL_ w

006
ooz

0

OOCj
Ij

0o_ o

105

X



The amplitude of the side-to-side angle scan required is not extensive, but the question is how fast must it be

accomplished. At angular rates required to track LEO objects, approximately 0.03 radJsec, the Table below show

how long a time accomplishing the above scans would take, along with the round-trip time for signals to leave
and return to the receiver:

Table 7

Important Time-scales for Erecting the EO Picket-Fence

total lateral angular
orbital scan angle rate
altitude lvD x D/R rad/sec

200 km

600 km

1500 km

0.206 radians 0.030

0.083 radians 0.030

0.034 radians 0.030

time optical time between

for 1 full signal beam

scan cycle rnd-trip positions
time

I3.8 sec 0.003 sec 0.050 sec

5.4 sec 0.008 sec 0.0067 sec
2.2 sec 0.020 sec 0.0009 sec

Comparing the iast two columns in Table 7 above, we see that the low altitude system _200 km orbitai altitude

searcher, having a slant range of 400 km) would be reasonable, requiring a telescope capable of tracking LEO

objects ( only 0.030 ra&'sec, far less than current demonstrated technology ; see Figure 7 _,with a laser rep rate
of 20 hz, and lots of time between pulses for the signal to get back to the receiver before the next pulse is
launched.

However, at the 600 km altitude (1200 km slant range), the required PRF is i50 hz

( i/0.0067 sec), and the round-trip time is just a bit LONGER than the required interpulse time, indicating the
beginnings of possibie difficulty with using the same dish as both transmitter and receiver. A separate transmitter

and receiver dish would, of course, work but is more expensive. At the longer range ( 1500 km altitude, or 3000

km slant range), the required laser is i 000 hz ( and at least 1000 joules per pulse !!! ), and because the optical
round-trip time is now 0.02 sec with an interpuise time of 0.00| sec, a separate dish for the transmitter and
receiver is a necessity.

We must conclude from this that initials debris detection by an active illuminator appears to be a diMcult task, if

it is to be used to acquire all the objects within a one-year time frame over the orbital altitude ranges of interest.

6.Active Optical Acquisition using a CW Laser Illuminator

In the above, the validly of the passive opticai acquisition system was established using sunlight as the

illumination and slewed telescope as a collector so as to provide as much detection area as possible, leading to a

total search time requirement less than 9-12 months (see Figure 21 ; 20 hrs day operation for i year results in

7300 hours of search time). The active-slewing approach was necessary, since the debris objects are oniy visible

against a dark-sky background (ie at dawn and dusk) for a totai of up to 4 hours per day. The advantage of an

active CW laser illuminator is to provide illumination on demand aii during the day and night if necessary', not

just at dawn and dusk as with the Passive Optical Acquisition system described above. The equations describing
the return signal photons are identical to those of the repped-puise illuminator, with the exception that the

illumination is continuos, not pulsed, it is, as was the repped pulse illuminator, single-frequency (the laser

xvaveien_h) not broadband (like sunlight), and we have the same direct control on its intensi_ and duration, via
the illumination spot size and laser pulse width.

The intensity levels which can be delivered to the interrogation volume depends of course on the laser

power level, the Strehl ratio for the beam at interrogation range, the laser spot size chosen to do the searching and

the atmospheric transmission from the transmitter to the range in question. The MINIMUM beam divergence
angle will be that of a diffraction-limited beam

0mi n = _. / D , F_-t-IM angle for a diffraction-limited beam
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and at 1000km range, the FWHM spot diameter for a 3.5 meter diameter transmitter aperture with a 1.3 micron

(i.e., a CW Iodine laser) or a 1.06 micron ( CW glass laser, which exist at power levels below 1 kw)

wavelength is about 0.3 meters in diameter. The mean power densities in the FWHM spot are functions of the

chosen range, spot size ( with 0.3 meters as a lower limit), illuminator power level, and are shown Figure 22

for a Strehl ratio of O.5 and an atmospheric transmission of 89% (calculated with the MODTRAN II code ( ref

3) for Iodine, and 80% for the solid-state laser wavelen_h.

The Figure illustrates that in order to produce irradiances higher than those of sunlight by AT LEAST the ratio of

sensor quantum efficiencies at 1 micron vs 0.5 micron:

Ihr_ake,.en= 0.1 w/cm 2 (sunlight) x 65% /20 % = 0.33 w/cm 2 (Laser req'm'nt)

with the minimum spot deliverable at the chosen 1200 km slant range, the laser must be just under 1 kilowatt at
l micron. Such lasers exist in the industrial laser community. However, the spot diameter is only 30 cm in

diameter, and so the beam will have to be slewed rapidly to cover the entire sky in the picket fence search

pattern in under one year.
Figures 23 & 24 show the SNR and SBR for a ! micron CW illuminator producing 20, 200 and 2000

w/cm2 at a 1200 km slant range against a daylight-sky background ( Figure 23 ) and against a moonless-night

sky background (Figure 24). The parameters for the calculation are shown in Table 3. Neither background
appears to pose a problem for a CW illuminator delivering 2 to 2000 watt / cm" at range, using relatively short

integration times. Table 8 below shows the illuminator and sensor focal plane requirements for this kind of

system.

Table 8

Spot Size, Power Levels and Sensor Paramters for the CW Illuminator
Minimum Possible

Mean lrradiance Required Minimum Minimum Minimum Focal Plane Focal Plane

in FWHM Spot Illumination Spot Dia Spot Dia Laser Power FOV FOV

Time Required Deliverable Required at Req'd 2000 X 40

for SNR=5 at 7 km/sec (3.5 M,1200 1200 km (Vt/f_.) micron det'r

km, 1 lam) Slant Range & 105 M FL
w / cm'- sec meters meters watts radians radians

2 4E-4 2.8 0.3 1.2 E+5 2.33 E-6 7.6 E-6

20 4e-5 0.28 0.3 1.4 E+4 2.33 E-7 7.6 E-6

200 4E-6 0.028 0.3 1.4 E+5 2.5 E-7 7.6 E-6

2000 4E-8 0.0028 0.3 !.4 E+6 2.5 E-7 7.6 E-6

As can be seen the minimum power required at the debris altitude is 14 kw and with a Strehl ratio of 0.5 and

atmosheric uplink transmission of 0.85, the minimum power out of the ground transmitter is about 33 kw of

CW 1 micron radiation. No such 1.06 micron laser exists, but one could envision ganging 33 of the existing 1 kx_
1.06 micron lasers, phase-locking them and using the net beam. Rather than go through such heroic efforts, it
shoul be noted that the Phillips Lab at Kirtland AFB in NM has two CW 1.3 micron lasers which have been

operating for years in this power range:

ROTOCOIL 40 kw CW Iodine at 1.3 microns

RADICL 20 kw CW Iodine at 1.3 microns

Hence this illumination scheme could work, using these lasers, 3.5 meter optics for both transmitter and receiver,

and a focal plane similar to the one used by M-IT LL in the visible, but made of detectors optimized for 1.3
microns.
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Conclusions

1. The scanned RADAR beam concept, using a HAYSTACK-like microwave radar appears able to

accomplish the detection of the estimated 100,000 debris objects of interest to ORION in less than 1 year's time
of dedicated operation (20 hrs / day. 365 days / year). To accomplish this, the current HAYSTACK detection

data on this class of debris objects0ver the orbital altitude region of interest dictates that the beam be scanned

laterally in a pattern termed a "bow tie" pattern to minimize leakage through the large planar measurement area

approximately 1 beamwidth thick, 10 (or more) beamwidths wide (azimuthal sinusoidal scan ) and the full orbital

range high (300 km to 1500 kin), controllably-oriented to put the large-area face perpendicular to the dominant
debris stream being measured. The RADAR would point at about 30 ° elevation angle from the horizon, to

provide sufficient time tbr Pusher Laser irradiation before the detected debris has risen in the sky from horizon

to zenith.

2. The angle-scanned passive-receiver optical system, using sunlight to illuminate the debris objects at

both dawn and dusk for approximately two hours each period also appears capable of the same success as the

RADAR system described above by IVllT/LL. This approach would use sunlight as the illuminator source and

detect the diffuse scattering againsi a dark-sky background. We expect that a similar (low---say 30°) elevation

angle from the horizon would be used as with the RADAR, for the same reasons. Detection in daylight using
reflected sunlight appears impossible against the background of the bright day sky. The same concept of a

controlled azimuthal scan to produce a "picket fence" measurement area ( configured as was the RADAR "bow

tie") produces a large measurement area. However, it is also necessary to used a focal plane array which is

capable of "on-chip binning", to allow the collection of reflected signal photons from the debris object to be
collected on an addressable sub-array of pixels on the focal plane (with correspondingly-longer integration times)

and reading this sub-array out as a single "macro-pixel", so minimizing electronic read-out noise photoelectrons

while maximizing signal photoelectrons. The angle-scanned passive receiver dish (the same 3.75 meter system
used for the Pusher Laser) appears able to accomplish the detection of the estimated 100,000 debris objects of

interest to ORION in less than 1 year's time of dedicated operation ( 4 hrs / day, 365 days year).

3. Initial debris detection by an active rep-pulsed laser illuminator, while possible according to this

analysis, is very difficult. While it offers the opportunity of 24 hr / day operation(since it uses the laser to
illuminate the debris, not the sun), the active illuminator detection concept appears to require substantial fluence

(joules/cm 2) on target to achieve Simaal-to-Noise Ratios greater than unit)'. We find that Signal-to-Background

Ratio (ie, the contrast between the dav sky and the reflected signal) is not a problem at all in this sensing

technique. The high required fluence implies high laser pulse energies and/or small illumination spots---however

small spots imply high pulse repetition frequencies to achieve the desired detection of the 100,000 object set in

less than l year, even with the "picket fence" detection scheme. Trade-offstudies reported here indicate that

for very low orbits (the approximately 200 km Space Shuttle altitude), the laser illuminator's pulse energy and

rep rate are low ( 300 to 1000 joule per pulse, at 20 hz using 300 meter diameter spots for illuminating, and a

picket fence pattern approximately 167 beamwidths wide ) .Attempting to achieve to same l-year total detection

time for objects at 600 km orbital altitudes (1200 km slant range), the laser energy could be the same, but the

illumination spot has to decrease in size to provide more reflected photons which, over the longer path to the

receiver, would give the same SNR as for the lower altitude detection. Calculated requirements for the 600 km
111



altituderegionarefor a 300 - 1000 joule laser pulse at 150 hz, using a 120 meter diameter illumination spot
diameter at the slant range of 1200 km and a picket fence pattern approximately 420 beamwidths wide. The

requirements for an illuminator useful at the 1500 km altitude (3000 km slant range) are much more demanding.

4. Initial debris detection by an active CW laser illuminator, while not extensively studied in this
analysis, appears certainly do-able. It offers the opportunity of 24 hr/day operation at moderate transmitter

power levels. It's function is to simply act as a brighter sun in the measurement area, using the same "picket

fence" scanned beam and same on-chip binning concepts as the sun-illuminated detection scheme, and while

suffers a bit due to the lower quantum efficiency of detectors at 1 micron as compared to those in the visible (0.4-
0.7 micron ), merely has to overcome sky back_ound. It offers an additional plus--the transmitter might also act

as a crude laser ranger, to assess the performance of the Pusher Laser after impulse deliver-,.
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2. ENGAGEMENT STRATEGIES AND RISK

2.1. The Problem

The mission of the ORION system is to reduce significantly the risk to manned assets in space

and, to a lesser extent, provide a cleaner environment in space for satellite operations. Extensive work by
NASA/JSC has resulted in a model of debris density and flux in space parameterized in various ways.

Chapter 1 of this report contains a review of these models. Chapter 2 addresses strategies for removing

debris from space using ORION.

The obvious strategy for removal of debris is to reduce the perigee height to below 200 Km. in a

single period of irradiation. This might be called the "deluge" strategy. An alternative strategy could be to
reduce the perigee height in steps of say 200 Km. This might be called "steady rain" strategy. In particular,

the latter strategy might be forced on the ORION system if an adequately powerful laser cannot be found.

This chapter will analyze the risk entailed in either strategy and make recommendations for one or more

strategies to be tested/followed.

2.2. Debris Flux and Risk to Spacecraft

The most extensive set of data on debris of sizes > 8 mm. has been collected by the Haystack

radar during the last four years. These data have been extensively analyzed by NASA/JSC 1. There are

several ways the potential risk to space assets can be derived and represented from these data. Fig. 2.1

below is

CATALOG DETECTION RATE = 0.2 1 HOUR

TOTAL DETECTION RATE = 6.0 / HOUR

1.4

1.2

 o.8
 o.6
S04
-=0.2

o o o o o o° o o oo to o to

(1_m _- "-Altitude .)

0

Fig. 2.1. Debris Detection Rate at Haystack Radar

drawn from the reference cited above. The two graphs represent the penetration rate by RSOs against the

altitude of penetration of the Haystack radar beam when it is pointed straight up. The upper graph

'E.G.Stansbery, T.E.Tracy, D.J.Kessler, M.Matney, J.F.Stanley :"Haystack radar Measurements of the
Orbital Debris Environment", JSC-26655, May 20, 1994.
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(squares) is the actual detections and the lower graph (diamonds) is the detection rate of cataloged RSOs.
The cumulative detection rate is --6 / hour most of which are debris and hence of interest to the ORION

system.

Fig. 2.2. below interprets the detection rate as a flux through a square meter of cross-section per
year. This is a conventional way of representing risk to an orbiting resident space object (RSO). The

obvious inference from the graph of debris flux is that the population is peaked at 800-1000 Kin.

Consequently, the risk to any operational spacecraft at this altitude regime(measured as flux/me/year) is

significantly higher than at other altitudes. Further, it is estimated that there are approximately 120000
debris larger than 1 cm. characteristic size in orbit between the altitudes of 300 and 1500 Km. Over one

half(approximately 70000) of these debris are estimated to reside in the 800-1000 Kin. altitude bin. Also,

most of the debris in this altitude bin are in near-circular orbits inclined to the Equator at approximately
65 °. Finally, it is important to note that the debris in this bin correspond to debris type A in our debris

target matrix.

i 3.0E-05
2.5E-05

2.0E-05
=_=

,,=, 1.5E-05

m 1.0E-05

_ 5.0E-06I--

o.o +oo=
u._

300 500 700 900 1100 1300

I

1500

ALTITUDE (100 Km. BINS)

Fig. 2.2 : Flux through Haystack Beam

2.2. The Deluge Strategy

Given an ORLON laser of sufficient power, this strategy would require the system to track and

irradiate any debris piece that is detected. Per Glenn Zeiders' calculations, it is adequate to reduce the

perigee height to 5200 Kin. for a rapid re-entry and decay (in less than a day) of the debris in the

atmosphere. The risk of such a strategy is the marginal increase in collision probability with the

International Space Station due to debris transiting the 400 Km. altitude regime. However, as is evident

from the figures above, the risk due to the current environment is very low - in fact the collision probability

ofa Intemational Space Station with a debris piece of >l cm. size is estimated to be I in 70 years. Hence,

despite the fact that an ORION system could "remove" - 100 debris objects per day, the increase in risk to

the International Space Station is minimal. Thus, the best strategy for ORION is the reduction of perigee

heights of irradiated objects to below 200 Kin. However, according to Zeiders and Phipps, the penalty of

this strategy is a requirement of laser average power of 150 kW. (for debris of Type A) to 500 kW. (for
debris of Type D).

2.3. The "Steady Rain" Strategy

The major reason to look at an alternative strategy is the possible limitation on the power output
of the laser. There is no extant laser that will meet the average and peak power requirements of the ORION

system but lasers that can be scaled to meet the requirements may be available. Given such a system, it is
essential to derive a strategy for debris removal that achieves the following:
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i. A"staircase"typereductionofperigeeheightoraltitudeofdebris.
2.Riskreductioninhighriskenvironment.
3.Nosignificantenhancementofriskin lowriskenvironment.
4.Noenhancementofrisktomannedassetsat-400Km.altitudes.

TherecommendedstrategyderivesdirectlyfromthedistributionofdebrisasportrayedbyFigures2.1and
2.2basedonextensiveanalysesbyNASA/ JSC 2.

Per the model, there are approximately 70000 pieces of debris in the 800 Km. - ! i 00 Km. altitude

band (three altitude bins using 100 Km. bins). These are largely in the 650 inclination, near-circular orbits
with sizes > 1 cm. Based on the putative parentage of these debris, they are expected to be near-spherical 3.

Type A in the debris matrix is representative of these objects.

The strategy then is to focus on the debris in the three altitude bins between 800 Km. and 1100

Km. The acquisition sensor should develop and use a search strategy that maximizes the probability of
detection of these debris and should preferentially hand these debris offto the laser for irradiation.

The laser should ensure that the debris is irradiated adequately to reduce the perigee height by 100

- 200 Km. The laser system or the radar should then track the debris so as to assess the change in perigee

height to facilitate book-keeping and to ensure that the perigee has not been put into or below the

International Space Station altitude bin. If it has, then more tracking resources must be brought to bear to

assess any risk to the International Space Station until the perigee height decreases below 200 Km.

A great advantage of this strategy is that the point of irradiation becomes the apogee of the orbit.

Further, because the inclination of the orbit is close to the critical inclination, the argument of perigee

moves very slowly. Thus, further apparitions of the same debris over the laser would be near the apogee of

the orbit which, according to Zeiders, is the preferred point of irradiation for maximal effect on reducing

the perigee height.

Once the perigee altitude of the debris piece has been reduced in steps to the 400 Km. bin., any
further irradiation should seek to lower the perigee to 200 Km. so that the debris can decay rapidly.

The implications of the "steady rain" strategy are as follows:

I. Risk at lower altitudes is increased slightly. However, the risk is a factor of 5 - 10 times lower

to begin with because of the debris distribution and hence the increase in risk is negligible.

2. Debris must be classified as to altitude bin and perhaps orbit type as soon as it is acquired by

the detection sensor. Debris of interest for perigee reduction must be distinguished from other

debris.

2. Post-irradiation tracking of the debris will be required so that the destination altitude bin can be

identified and the effect of the laser quantified.

3. Some form of book-keeping would be required to ensure that risk in low risk environment is

not unduly increased and the International Space Station is adequately safe. However, cataloging

21bid : E.G. Stansbery et al

3Sphericity is expected but not established - see M.J.Matney et al : "Observations of RORSAT debris using
the Haystack Radar", presented at the Space Surveillance Workshop, MIT Lincoln Laboratory, March 95.

Experiments with the Lincoln radars will answer this question.
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of the debris is not required except in case the risk to the International Space Station has been
increased

Apart from the International Space Station, there is significant concern about the operational

safety of unmanned payloads in orbit. The distribution of these payloads in the current space surveillance
catalog is depicted in Fig. 2.3. It is evident that active payloads are concentrated in the 700- 900 Kin.

altitude bins while the population of inert payloads peaks at these altitudes too. Hence the strategy
recommended above is deemed safe from the safety of operational unmanned payloads.
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Fig. 2.3. Distribution of Cataloged Payloads

It is evident from the figures in this section that there is a secondary peak of both payloads and

debris in the 1400 Km. altitude bin. If the ORLON system were capable of irradiating these debris, a similar

strategy to that outlined above is appropriate. However it must be ensured that before these debris occupy

the 900-110 Kin. perigee bins, an adequate number have been removed from these lower bins so that

operational safety of unmanned spacecraft at these altitudes is not worsened

2.4. Recommendations

The removal of debris in one irradiation remains the best strategy for debris mitigation. However,

no such laser of adequate power and operational capability is expected to exist in the near future. Hence, a
strategy for operations is recommended for the ORION system that will enhance its effectiveness in its task

of cleaning out the debris environment. This strategy takes advantage of the debris density concentration in

the 800 - 1000 Km. altitude band and recommends a staircase mode or "steady rain" technique of removing
debris.

118



6.DEBRIS ACQUISITION AND TRACKING WITH
MICROWAVE RADARS

6.1. The Problem

The ORION laser faces significant technical and political problems in autonomously acquiring
debris for irradiation. Hence, a system is needed whose function would be "to seek, to find and to hand-

off' to the laser. Specifically, the functions to be performed by the acquisition system are:

1. Autonomous detection of debris of interest to ORLON.

2. Precision tracking of the debris.

3. Rapid discrimination using orbital and signature data.
4. Handover to the ORLON laser for irradiation.

5. Assessment of the effects of the laser on the debris.

6. Book-keeping of debris, particularly in case the "steady rain" strategy of debris removal is used.

7. Adequate throughput to match the appetite of the laser.

There are at least three possible types of systems that can achieve these objectives. They are con-
ventional microwave radars, conventional visible wavelength optical systems and unconventional seren-

dipitous detection systems using communication satellites as transmitters. This chapter analyzes the use of

microwave radars as acquisition systems for ORLON.

6.2. Why Radars ?

The advantages of microwave radars are the following:

I. There are high sensitivity radars available in the inventory of AF and Army Space Commands
and at least at one other location in Germany.

2. Radars are generally capable of all-weather day/night operation thus enabling the ORLON laser

to work in cloudless day and night conditions.

3. Microwave radars generally have high metric precision and near-real-time signature processing

capability thus supporting the discrimination and handover requirements.
4. The mechanical/electronic dynamics of the radar permit stare-and-chase operations as are

needed for ORION and also permit a high throughput of debris tracking.

The disadvantages of microwave radars are:
1. The radars are high cost items ifa new system has to be procured (see Chapter 12).

2. Generally, the high sensitivity radars have a narrow instantaneous field-of-view which compli-

cates the search and acquisition process and requires creative techniques for enhancing through-

put.
3. Existing radars are not optimally located for laser operations.

On balance, microwave radars are an attractive option for the ORLON system.

6.3. The Choice of Radars

Microwave radars operate at a range of frequencies from VHF (150 MHz) to W-band (95 GHz) in

discrete frequency regions. The debris sizes (1 - 10 cm.) that we are considering is a major driver in the

choice of frequency. Below L-band (-1300 MHz), the radar cross-section of debris smaller than 5 cm. is so

small as to preclude effective detection. Further, for a given small debris ( 1 - 5 cm.), the radar cross-
section at > 10 GHz. frequency is -10 dB higher than at L-band or S-band (2 GHz.). Hence, the desirable

range of frequency of operation of a radar is X-band (I 0 GHz.) or higher.

At present, the high power tubes for X-band radars are easily available while for higher frequen-

cies, such tubes are experimental, particularly for the high powers (-> 100 kW) required by this applica-
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tion.HenceaX-bandradaristheidealoptionwithaC-band(4GHz.)beinganattractivealternative.
HigherfrequenciesoftheorderofKu-band(16GHz)andK-band(35GHz.)maybeattractivealternatives
inafewyears.

Thereareweatherconsiderations to be taken into account in radars too. Below C band, the

weather has negligible effect on the radar. At X-band and above, moisture in the air and rain take an in-

creasing toll on the sensitivity of the system. For example, the sensitivity of an X-band radar could de-

crease by 3 dB. in heavy rain while the K- and W-band radars would suffer substantially larger attenuation

in humid atmospheres. Hence it is preferable to operate a radar for the ORION system at lower frequencies.

The available radars and their parameters in the frequency ranges of interest are given in Table

6.1. Notice that a UHF radar has been included because it is a high sensitivity phased array radar. The sen-
sitivity of these radars is portrayed in the conventional manner as the S/N ratio obtained on a single pulse

on a 0 dBsm.(or a I sq. meter) target at a slant range of 1000 Km. from the radar. A brief description of the

radars and their operating characteristics is included in Appendix 6.1. Table 1 only lists the existing radars.

Raytheon Company has paper designs for an upgraded X-band phased array radar and for a X-band inter-

ferometric radar system both of which would be suitable for the ORLON system; however, these are un-

funded at present. Further, existing C-band radars have not been included because they are not sensitive

enough to detect the small debris of interest to the ORION system. It is quite conceivable that an existing
C-band radar could be upgraded with a bigger antenna (say 25 meter) in which case it would be a viable
candidate.

The Haystack radar is the most sensitive of the lot. It is exceeded only by the Arecibo and Gold-

stone radars neither of which are capable of tracking near-earth satellites and hence are not included in the

table. The HAVE STARE system is intermediate in sensitivity between Haystack and HAX. Haystack,
HAVE STARE and HAX operate in the desired frequency range. The TRADEX radar, which is located on

the Kwajalein atoll, has the same sensitivity as Millstone. There is a German radar (FGAN) that is sensitive

enough for the ORION system requirements but was not pursued further because of its location, its status

as a University research radar and the lack of information on its detailed operating characteristics (this
could be pursued in Phase 2 if desired).

TABLE 6. 1: AVAILABLE RADARS

HAY

STACK

HAVE

STARE

HAX MHR* FPS-85

SENSITIVITY (dBIpulse) 61-65 47 48 50
(S/N on 0 dBsm at 1000 Km

PULSE LENGTH (ms) 2 - 5 0.175 2 1 0.25

10 10 16 1.3 0.44

1-10

0.05

2, 2A

FREQUENCY (GHz)

RANGE PRECISION (m)

0.075

5, 3
0.3

BEAMWIDTH (deg)

1-10

0.1

10, 10
0.15

ANGULAR RATE (deg/sec)
ENCODER LSB (mdeg)

TRACK PRECISION (mdeg)

10-25

0.44

3, 3**
1.7

25

1.0

NA

NA

1-2 3.0 25

PRF (Hz) 40 -100 40-100 40 20
LOCATION (deg. LaUtude) 42.6 32? 42.6 42.6 A' 28

*TRAOEX SIMILAR TO MH

**TRADEX RATES 1001 sec.
ARATES IN AZIMUTH, ELEVATION

A^TRADEX LOCATION 80 LATITUDE

Table 6.2 below gives the expected radar cross-section of the debris matrix targets. Note that Tar-

get F is omitted from the table as it is a rocket body that is large and hence easily detectable by all the ra-
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dars. Table 6.3 gives the expected S/N ratio on the debris matrix targets at a range corresponding to an

elevation of 300 .
TABLE 6.2. RADAR CROSS SECTION OF DEBRIS MATRIX TARGETS

RADAR FREq

(GHz.)

Haystack ^ 10

HAX 16

MHR 1.3

FPS-85 0.44

A_ __a _C

( RCS in dBsm.)

-40 -40 -35

-40 -40 -35

-50 -50 -43

ND ND ND

^ HAVE STARE = Haystack

_o _E

-30 -181-30"

-30 -181-30

-35 -181-35

NO -23/NO

• Maximum I Minimum

ND = Not Detectable

TABLE 6.3: S I N RATIOS FOR DEBRIS MATRIX TARGETS AT ACQUISITION

E

1002

0 0 9.1 1.3 7-19

-10 -9.5 2 1.5 18 11.5

Debris Type A B C D

Avg. Altitude (Km.) 907 875 663 tl 70

Range at 30o Elevn. (Km.) 1560 1510 1180 1955 1705

SIN for Haystack (dB) 17.3 17.8 23.1 19.3 25 - 37

(appropriate pulse)

S/N for HAX (dB)

( 2 ms. pulse)

SIN for TRAOEX (dB)

It is evident from Table 6.3 that a radar similar to Haystack is the instrument of choice for the

debris matrix targets as the expected S/N ratio is over the threshold of delectability (12 dB). The HA VE

STARE radar can be upgraded to nearly Haystack 's performance and would then be viable for the task.

6.4. Operation of Haystack (or similar) Radar for ORLON

A concept of operations will be described in this section for a radar to act as the "debris finder"
for the ORION laser. As part of the concept, the requirements/capability to perform all the functions tabu-

lated in 6.1 will be stated.

6.4.1. Autonomous Detection of Debris
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It is essential for the radar to have adequate time to acquire, track, discriminate and handover the

target to the laser. The discrimination task will take several minutes to complete and hence it is essential for

the radar to acquire the debris early in its apparition. Hence, the optimum strategy is for the radar to point
at -300 elevation and conduct a small scan. The choice of azimuth is dictated by the location of the radar

and the inclinations of the orbits that are of prime interest. Since most of the debris are in high inclination
orbits, a radar on or near the equator could point due north or south at 300 elevation for detection. How-

ever, Haystack is located at 42.60 north latitude and hence pointing due south is recommended as it im-
proves the inclination coverage significantly (see Appendix 6.1).

The Haystack radar (or an upgraded HAVE STARE radar) has a very small beamwidth

(instantaneous field-of-view) of the order of 0.05 °. Long experience with Haystack has established that in

a stare mode pointing straight up, the radar detects, using a 1 ms. pulse, an average of 6 debris targets/hour
(see Chapter 2) between the altitudes of 500 Km. and 1500 IOn. At an elevation of 30 °, the radar loses -9.5

dB in sensitivity due to the increase in range for the same altitude range. However, using a 5 ms. pulse
mode, the radar can regain 7 dB in sensitivity. Additionally, the debris targets transit through the beam at a

slower angular rate (see appendix 6.1) thus allowing multi-pulse summation to retrieve the remaining sen-
sitivity "loss". Hence, we expect that the rate of detection would be of the order of 6 targets/hour in this

mode. However, this has to be established by experiment in Phase 2. Unfortunately, half of these targets
will be setting. Out of the three left, only one might come into the field-of-view of the laser. Therefore,
methods have to be sought to enhance the rate of detection.

Detection statistics can be enhanced by conducting a scan with the radar. There are three modes
for such a scan:

1. A mechanical "bow-tie" scan of-20 beamwidths which can be essentially "leakproof" and will

cover a 1° swath in azimuth. Since there is no requirement for the scan to be leak-proof, a larger
scan can be employed if it is consistent with antenna dynamics.

2. An electronic scan that can be imposed on the beam by building a phased-array "lens" into the

high power beam path between the feed and the Cassegrainian subreflector. Such a capability was
designed for the HAVE STARE but was never built. It is fairly expensive and also reduces the
sensitivity by about 2 dB.

3. An electronic scan that is generated by redesigning the high power feed as a small phased array.
This has the advantage of avoiding the sensitivity loss but is still a complex upgrade.

It is our recommendation that the mechanical scan be tested in Phase 2. The other techniques are expen-

sive (several million) and complex and shouM be resorted to only if the mechanical scan cannot satisfy the
appetite of the laser. The gain in detection statistics to be expected increases at least linearly with the scan
width and should be verified in Phase 2.

6.4.2. Precision Tracking of Debris

Once a debris target is detected the radar has to initiate tracking in what is essentially a transition

from a 'stare" mode to a "chase" mode. This is a classic capability of most radars for detecting space ob-

jects with large radar cross-section. However, the chase operation for a debris with small RCS of the types

of interest to ORLON system is more challenging because the S/N ratio in the monopulse angle channels is
not large. It is the signal in these channels over several pulses that enable the radar to determine the direc-
tion and rate of movement and initiate a chase.

The HAX radar, collocated with the Haystack radar has recently developed a "stare-and-chase"

capability for debris targets. Since both Haystack and HAX share the same control system, the "stare-and-
chase" algorithms can be transitioned to Haystack with small modifications. While the Haystack radar does

not support the high angular rates of the HAX (see Table 6.1), we believe that it is still capable of the
"stare-and-chase" mode. Again, this is amenable to test in Phase 2.
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The Haystack radar can track in four dimensions - azimuth, elevation, range and range rate. The

current precision in these dimensions is:
Elevation 10- 35 prad.
Azimuth ((10 - 35 )/cos(elevation)) prad.

Range 0.25 - 2 meters

Range Rate I - 10 millimeters/second.
Bias uncertainties in the metric data from the Haystack radar are of the same order as the precision.

Accurate tracking of the debris is required to ensure that the acquisition window for the laser is

not large. The handover volume is dominated by the angle uncertainty and, at worst, is of the order of 35

prad which translates to 35 meters at 1000 Km. This is certainly acceptable to the acquisition mode of the

laser, lf a smaller handover volume is required, near-real-time processing of the metric data is required

with a Kalman-type filter, along with better calibration techniques. These are available and amenable to

testing in Phase 2.

6.4.3. Discrimination

follows:

This is probably the most time-consuming and complex task for the radar. The requirements are as

1. Verify that the debris is in an ascending pass.
2. Ascertain the catalog status of the debris in track.
3. Ensure that the estimated size and, if required, dynamics of the debris are within the capability

of the laser.

4. Measure periodicities in the signature.
5. Check whether the debris will transit the laser field-of-view for the time interval required by the

laser system to successfully irradiate it.
6. Guarantee that no other resident space object, and in particular, no payloads will be illumi-

nated by the laser inadvertently during the engagement.
7. Guarantee that no airplane intercepts the laser beam during the engagement.

6.4.3.1. Correlation with the Catalog

The monopulse data recorded during the transit of the debris through the beam is adequate to dis-

cern whether the target is in an ascending pass. If not, the search can be resumed. As soon as - 30 seconds

of metric data (or -5 observations) are taken, an initial orbit can be estimated and checked to see if the
debris will be within the field-of-view of the laser for the required time interval during this apparition. If

not, the radar can return to its search scan. A correlation with the catalog should be done next. The data

quality is adequate to yield a good estimate of the orbit of the debris which can be checked against all the
RSOs in the catalog. This task should take no more than 5 seconds with a modern work station and appro-

priate architecture of the software. If it is a known large RSO, the search for debris can be resumed. If it is

a cataloged piece of debris, a real-time decision needs to be made based on the following:

I. Is it of interest to the ORLON system - depending on strategy and size?

2. Who nominally "owns" the cataloged debris? Does the ORION system have "permission" from

the "owners" to irradiate their debris?

Given a positive answer to both questions, the next step can be taken.

6.4.3.2. RCS, Size and Dynamics

As the tracking of the debris piece continues, the radar must estimate the mean RCS and perhaps a

variance. The signature data must also be analyzed through the mechanics of algorithms like auto-
correlation or Fourier transform to determine any periodicities.
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ThemeanRCS is used to estimate a characteristic size for the object in track. A quick method is

to use the graphical relationship established by NASA/JSC by measuring 39 debris-like targets at various

radar wavelengths _ (see Fig. 6.2). It must be realized that this is quite approximate as the estimate of mean
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Fig. 6.1 : RCS - to - Size Sealing Chart

RCS is significantly affected by periodicity in the signature and, further, debris are known to have perio-
dicities ranging from -4). I sec. to >>30 sec. which will significantly affect the estimates (see Appendix 6.2
on the characteristics of debris).

The value of estimated periodicity in the signature lies in the fact that it will be significantly af-
fected by the impact of the laser energy and, hence, it can be used as an indicator of the success of the en-

gagement.

The inferred size of the debris must be compared to a threshold set for the ORION system to de-

cide on the engagement. The periodicity may prove useful for the same purpose.

6.4.3.3. Inadvertent Illumination of RSOs

A major concern with the ORION system is its potential for inadvertently illuminating and dam-

aging a payload in orbit. This concern is motivated by both treaty implications and the cost of "friendly
fire"

Once the debris has passed the filters in the previous sections and deemed suitable for engagement

by the ORION system, a detailed prediction needs to be made of the part of the trajectory that the laser

would illuminate• This prediction has to be compared with the known position of the entire catalog of

payloads to guarantee that inadvertent illumination does not occur. Further, US Space Command may
require that a real-time check be made with a small catalog of important domestic payloads to preclude
damage or interference.

A question that remains is whether it is adequate to check against the locations of payloads or
whether rocket bodies and other large objects in the catalog must be included in this check. The concern

stems from the possibility of inadvertently causing a rocket body with left-over fuel to explode. Pan of the

answer is political. The technical part of the answer will come from an analysis of the impact of the laser
on the debris Matrix Target F.

E.G.Stansbery et al" "Haystack Radar Measurements of the Orbital Debris Environment", NASA/JSC-

26655, May 20, 1994, p. a29.
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Onemethodofguardingagainstinadvertentilluminationisfortheacquisitionradartoexamine
thespacealongthetrajectoryalittleaheadoftheORLONlaser(anadvanceguard)withtheabilitytoposi-
tivelycutthelaseroff incaseofalowaltitudeRSOdetectedinthebeam(ofcourse,thisworksonlywhen
thelaserandtheradarcansimultaneouslyobservethedebris).However,it isunlikelythatRSOsatallal-
titudescanbedetectedinthismodeandthecatalogwillhavetobereliedonforavoidanceofthehighal-
titudesatellites.SincetheratiooflowaltitudetohighaltitudeRSOsis-5:1,thiswillbeaneffectivetech-
niquethatwilt reducecomputationalcomplexity.This is a capability that couM be demonstrated in Phase
2 at the Lincoln Space Surveillance Complex using Ha_'stack radar and the Firepond laser.

The Airborne Ballistic Missile Defense Laser (ABL) being built by AF Phillips Laboratory faces

some of the same issues and the solution would be useful to ORION. Other systems like SBV/MSX,

SWAT, Firepond laser and AMOS/Maul laser system have faced some of the same issues.

This is a major issue for the ORLON system. It will affect decisions on site location and

modes of operation.

6.4.3.4. Aircraft Avoidance

Regardless of the wavelength of operation of the laser, the ORION system has to ensure that it

does not inadvertently illuminate an aircraft. Unlike RSOs, aircraft do not follow predictable trajectories. It

is prudent to choose a site where major air traffic lanes can be avoided. But, in any case, the ORION sys-
tem needs a real-time means of detection and avoidance of aircraft.

The technique postulated in the last section for avoiding RSOs by running an advance guard with
the radar will not work for aircraft avoidance because of pulse lengths used except in case a new phased

array radar operating at X-band is built for the ORION system. Optical guard bands using small telescopes
will work or an aircraft detection radar can be built into the system. Since the FAA is shutting down a sig-

nificant part of their radar system due to reliance on GPS technology, such a radar may be available to the

ORION system "free".

This is a major issue for the ORLON system. It will affect decisions on site location and

modes of operation.

6.4.4. Radar- Laser Handover

Once a debris has passed all the filters listed above, it has to be handed offto the ORION laser for

irradiation. The process in concept is very simple as the precision tracking of a Haystack-like radar is ade-

quate to narrow the search volume for the laser. There are two types ofhandover.

A real-time handover occurs when the radar and laser are collocated. In this case, the only issue is

the mutual calibration of the laser and the microwave radar pointing systems. This is not a major issue as

substantial experience exists at MIT Lincoln Laboratory and other places. The radar continues to track the

object until a successful handover has taken place. Note that this has a small impact on the concept of ad-

vance guard for avoidance of inadvertent illumination. However the fact that the beamwidth of the radar is

significantly larger than that of the laser mitigates this impact.

A non-real- time handover occurs when the radar and the laser are not collocated. In such a case,

the radar will have to determine a precise orbit and transmit it in some form to the laser system. The accu-

racy of the prediction is an issue that is being studied by AF Phillips Laboratory. Again, precise pointing

calibration of both systems is a solvable concern. Note that in this case, the concept of using the radar in a

guard band mode for avoiding inadvertent illumination does not apply.
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Concerns pertaining to the handover for both real-time and non-real-time can be addressed in
Phase 2 using the collocated and spatially dispersed set of MIT Lincoln installations.

6.4.5. Assessment

A critical issue is the assessment of the effects of the laser irradiation on the debris. The questions
that need to be answered are:

1. Did the target interact with the laser energy?

2. Can the mass, area/mass ratio or some similar parameter for the debris be estimated?
3. Can the characteristics of the laser-debris interaction be measured or inferred?

4. What is the perigee bin of the target post-irradiation?

5. Is there a threat to a manned asset as a result of the orbit change?

There are four methods that can be used to perform these assessment tasks:

1. Measure the plasma "flash" created by the laser-particle interaction.

2. Measure the "instantaneous" Doppler change of the target as a result of the interaction.

3. Measure the change in the periodicity of the signature.
4. Compare the estimated orbits pre- and post-irradiation.

The plasma "flash" is expected to occur on every pulse of the laser that hits the target. A visible
wavelength optical system, if collocated with the laser, can measure this effect. It is unknown whether

there will be an enhancement of the radar cross-section as a result of the plasma though experience with

observing large transtage thrusts indicates otherwise. The flash will clearly indicate that the target has been
hit. It is unknown whether the plasma will be quenched rapidly enough such that the interaction due to
each pulse can be monitored.

The Doppler of a target can be measured very precisely by a microwave or laser radar using tech-
niques of Fourier Transforms. Also, depending on the accuracy of the track, Doppler can be inferred from

range measurements. In either case, if the target is monitored while being irradiated by the laser, the de-

parture of the measured Doppler from prediction based on the pre-radiation orbit is a clear and rapid indi-
cator of laser effects. This technique is routinely applied at Lincoln radars for monitoring orbital maneu-

vers. However, it must be remembered that if the radar tracks the debris along with the laser, it cannot pro-
vide an advance guard to protect against inadvertent radiation of RSOs.

Continued tracking of the debris post-radiation will yield an estimate of the periodicity of the sig-
nature. This is very likely to have changed as a result of the laser-debris interaction and can both confirm

the interaction and, perhaps, provide a quick but poor estimate of the moment of inertia of the debris. Fur-

ther, the tracking data can be processed into an estimate of the orbit which, when compared with the pre-
radiation orbit, can yield the following.

I. An estimate of the total velocity change imparted to the debris.
2. The perigee bin into which the debris has been moved.

3. An estimate of the mass of the debris if the intensity of the laser at the location of the debris is
known and the size of the debris is known.

The new orbit must be used immediately to assess whether the threat to a manned satellite has

been increased. If the new perigee height is lower than that of the manned asset, but is >200 Km., cata-

loging of the debris by further tracking is essential so as to provide adequate warning of close approaches.

6.4.6. Miscellany
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Book-keeping of the debris merely refers to creating a histogram of the number of objects irradi-

ated vs. the perigee bin in say 100 Km. steps before and after. This is to ensure that the risk in lower alti-

tudes is not unduly increased and applies only in the case of the "steady rain strategy".

The throughput of the radar is governed by the approximately 10 minutes of total tracking plus the
search time to find the debris. The best it can be with one radar is 4-6 objects per hour or -_100 oh/cots�day

given 24 hour operation.

6.5. Summary

This chapter has presented a solution for the problem of acquiring and handing offdebris to the

laser system and also suggested techniques for verification and assessment off the laser-debris interaction.

Existing radars have been examined along with a few near-term new radars and a specific radar (Haystack)
has been recommended for near-term use. There remain several issues that need to be addressed by some

study and experimentation in a Phase 2. These are:

!. Detection statistics of debris :

Depending on the appetite of the laser, a high rate of detection of debris may be needed. Tech-

niques have to be investigated for using a narrow beam radar in appropriate modes to enhance the

detection of desirable debris.

2. Stare-and-chase of debris at Haystack:

The Haystack radar was designed with reasonable angular rates but has not ever been tested in a
stare-and-chase mode. Since this is crucial to the use of the radar for ORION, it has to be tested.

3. Inadvertent Illumination of RSOs:

This is critical issue for ORLON system. Techniques have been suggested in this section including

prescreening of laser pointing and a "advance guard" approach. It is crucial to test these prior to

any decision to design and field a laser system.

4. Radar-Laser Handover

Handover between collocated sensors has been amply demonstrated at the Lincoln space

Surveillance Complex and also at Lincoln's KREMS facility. However, if the laser is not collo-

cated with the radar, the handover is a slightly more difficult issue. Experiments can be conducted

using Lincoln's dispersed facilities to demonstrate the accuracy, calibration and hand-off systems

needed for the purpose.

A radar -based detection, acquisition, handover and assessment system seems quite feasible for the

ORION system. There is at least one available radar system that fits the requirements. A few issues and

concerns remain that can be answered with some study and experimentation.
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Appendix 6.1 : Description of Radars

6.1.1. Haystack radar

This flagship of the radars built and operated by MIT Lincoln Laboratory is by far the

most sensitive satellite tracking radar available today. The only radars with higher sensitivity are Arecibo

and Goldstone, both of which do not have the angular rate dynamics to support satellite tracking. Located

in Tyngsboro, Massachusetts, this radar is part of the Lincoln Space Surveillance Complex and operates at

10 GHz. with a 35 meter antenna. Its advantage is its high sensitivity. Its disadvantage is the relatively
northern location which will preclude its effective tracking of debris in low inclinations.

Haystack, HAX and Millstone Hill radars are part of the Lincoln Space Surveillance Complex
located at --42.6 ° North latitude. The preferred mode of operation cited in Chapter 6 for the Haystack radar
is to point due South at 30 o elevation. The location and the pointing impose a restriction on the inclinations

of the orbits o fthe debris that will be seen by the radar. Ifh is the altitude of the circular orbit, 0 is the
latitude of the site, cpthe minimum inclination of the orbit detectable at 300 elevation and R the radius fthe

earth, then the relationship of these quantities is given by

sin (600 - 0 - q_)= (R sin 020 °) /(R+h)

Figure 6. I. 1. below illustrates this relationship for Haystack radar.
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The Haystack radar has many waveforms: from 5 ms. CW for high single pulse detection sensi-

tivity to 256 _ts. pulse with 1 GHz. of bandwidth for high resolution imaging. The antenna rate are ade-

quate to support stare-and-chase operations at reasonable ranges(altitudes). Fig. 6.1.2. shows the angular

rates expected of debris in near-circular orbits at 30 deg. and 45 deg. elevations.

6.1.2. HAX radar

HAX is an adjunct to the Haystack radar that was built under NASA sponsorship. It operates at
Ku-band at 16 GHz. with a 2 GHz. bandwidth for high resolution imaging. HAX and Haystack share the

same control and processing system thus restricting their use to only one system at a time. HAX has high

angular rates and accelerations that render it suitable for easy stare-and-chase operations. The sensitivity of
the radar is restricted by the size of its antenna and hence is not usable for the ORION mission except in

the low altitude regime (for >5 cm. objects at <1000 Kin.).

6.1.3. Millstone Hill radar

This radar is collocated with Haystack. It operates at L-band (1295 MHz) which is a frequency

lower than desirable for the ORION mission. If for any reason, cataloging of debris objects >3 cm. upto

1500 Km. altitude is required, this radar would play an important part. Further, if, as a result of ORION

laser action, there is concern about hazard to a manned asset, this radar would be brought into play, along
with its sister radar TRADEX on the Kwajalein atoll, for refining the orbit estimate of the debris.

6.1.4. The FPS-85 radar

This is a large phased-array radar that operates at 440 MHz. and is located in the Florida panhan-

dle. While its relatively southern location and electronic agility offer great advantages, its frequency of

operation precludes it from being an effective detection sensor for the ORLON system.
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Appendix 6.2 : Some Characteristics of Debris

NASA/JSC has been collecting debris data with a variety of sensors over the years. Chief among

these is the Haystack radar whose data have begun to condition the debris models substantially. Collocated
with Haystack are the HAX and the Millstone hill radars both of which are tracking radars but with some-

what less sensitivity than Haystack. The description below of the characteristics of debris is derived largely
from the participation of the Millstone hill radar in the debris campaigns run by AF Space Command.

Hence, the results are from a biased sample of debris with characteristic sizes larger than -5 cm.

The periodicities in the signatures of debris presumably equal to or a fraction of the spin period)

range from as low as 0. ! sec. to tens of seconds. There are inadequate statistics to assign a probability
function to the spin period. All that can be stated at this point is that it would be invalid to assume that the

thrust due to ablation caused by the interaction of the laser energy with the surface of the debris would be

in the line-of-sight direction on an average. This will be true only if the debris is irradiated over several
spin periods at a rapid rate compared to the spin period.

The radar cross section of the debris particle is not always a clear indicator of the size of the debris

as there are objects that seem to be brighter (and larger) at optical wavelengths and dim (and smaller) at

microwave frequencies. The percentage of such debris is an unknown at present. If it is a small percentage,

it does not affect the functioning of the ORION system. If, in the unlikely event, it is a large percentage,
then the ORION system must employ an optical acquisition system in addition to a radar system. Or the
importance of the laser as an acquisition system is enhanced.
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7.0 ACQUISITION AND TRACKING OF DEBRIS WITH
VISIBLE WAVELENGTH OPTICAL SYSTEM

7.1 The Problem

The ORION laser faces significant technical problems in autonomously acquiring debris for

irradiation. Hence, a system is needed whose function would be "to seek, to fred and to hand-off' to the

laser. Specifically, the functions to be performed by the acquisition system are:

a) Autonomous detection of debris of interest to ORION,

b) Coarse tracking of the debris,
c) Rapid discrimination using orbital and signature data,
d) Handover to ORION tracker to point laser for irradiation (this precision tracker will almost

certainly be optical)
e) Assessment of the effects of the laser on the debris,

0 Book-keeping of debris, particularly in case the "steady rain" strategy of
debris removal is used, and

g) Adequate throughput to match the appetite of the laser.

There are at least three possible types of system that can achieve these acquisition and assessment

objectives. They are conventional microwave radars, conventional visible wavelength optical systems and
unconventional serendipitous detection systems using communication satellites as transmitters. This

chapter analyzes the use of visible wavelength optics as acquisition system for ORION.

7.2 Why Optical Systems?

The advantages of optical systems are the following:

a) High sensitivity optical systems can be built for significantly lower cost
than similar microwave radars.

b) Optical systems can be designed with a significantly larger instantaneous
field-of-view than conventional microwave radars.

c) High throughput of debris detection is achievable.

d) Adequate capability for metric lxacking is available.

The disadvantage of optical systems are as follows:

a) Optical systems will work only at night in clear weather, thus reducing the

available hours per day.

b) There are no immediately available optical systems of the kind needed for

ORION.

c) Discrimination capability of broadband optical systems is somewhat more limited
than that of radar.

7.3 Requirements

The major requirements for autonomous acquisition include being able to acquire and (coarse) track

the specified range of debris particles, to provide an adequate acquisition rate so that targets can be dealt with
at a reasonable rate, and to hand-over to a precision (optical) tracker for beam pointing. The additional
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functions noted above -- discrimination, assessment of effects, bookkeeping -- can be provided by an

optical system. In particular a lxecision tr_ker operating on handover from the optical acquisition system

couldprovidelargeranglepositioninformationtobetterthanmicroradianaccuracyfrom whichgood target

orbitinformationcouldbe deduced. Targetvelocitywould notbe available(unlessan activecoherent

system were being used) as would be the ease for a radar Wacker. Target optical signature time history
would provide some good discrimination informalion. When illuminated by the Pusher Laser, the
backscatter and the radiation from a plasma could be sensed for additional information.

For optical acquisition, the most stressing of the targets optically is the smallest/dimmest -- a 1

cm sized particle with a reflectivity (albedo) of 0.I. An optical system must be able to acquire and track

these targets at daily rates comparable to or greater than that achieved by a radar (Haystack) in order to be a

viable alwxnafive. Haystack has demonstrated acquiring small targets at a rate of about 6 per hour,

essentially at any time during the day. Haystack, in acquiring and tracking such targets, could provide track
information to an accuracy of about 40 ttrad. Table 7.1 below gives the expected VM of the debris matrix
targets.

Table 7.1 : Expected Brightness of Debris Targets

El

Target

Avg.
Altitude

(Km)

30 (leg.

DEBRIS A

(-40 dam)

907

DEBRIS B
(-40 dBsm)

875

DEBRIS C

(-35 dBm)

663

DEBRIS D

(-30 dBsm)

1170

DEBRIS E
(-18 to -30

dBem)

1002

1560" 18.2 ^ 1510 16.3 1180 8.1 1955 13.0 1705 13.7

60 d . 1030 17.2
.EVATI_e_ 990 15.3 760 7.1 1329 12.1 1130 13.3

• Slant Range (Kin) "Estimated V.

There are two possible optical acquisition approaches: an active system where an illuminating
beam is used to irradiate the target with a ground receiver detecting the backscattered radiation or a passive

system which detects the target when illuminated by the sun. The active system would require an
illuminating laser of a size similar to that of the Pusher Laser. Such a system has been considered and is

reported elsewhere. Invoking such a major element to provide acquisition and tracking looked difficult so a
passive system was also examined in some detail.

7.4 Passive Optical Acquisition

Passive acquisition and tracking of (large) space objects in low altitude orbits can be accomplished
when the objects are in terminator illumination around sunrise and sunset. Acquiring and tracking in the

terminator mode means that the sky background is dark so that the dim target light doesn't have to compete

with sunlight scattered by the atmosphere. Such acquisition has been routinely accomplished for large
objects -- typically satellites or spacecraft -- and less routinely for small objects. The stressing target in
the ORION group of targets is quite dim corresponding to a star of visual magnitude around 18 or 19. This
is not routine.

The anticipated operation of an autonomous passive optical acquisition system is "stare and chase."
The system will be pointed at a fixed position in the sky "staring" over its field of view with a fixed

integration time (frame rate). When a target is detected, the system will continue to stare for several frames
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asthetargetmovesthroughthefieldofview.Asdetectionframesaccrue,atargetisdeclaredanda
preliminarytrackfileestablished.Thistrackfileisusedtopredictthetarget'sfutureposition(oftheorder
ofasecond)andthetelescopemountisacceleratedtothecorrect(future)positionandvelocity.Thetarget
movestothecamera(tracker)boresightandstaysthereasthetrackertakescontrolofthemountand
automaticallytracks(chases)thetarget.

Asuitableacquisitionsystemwouldoperateforabout2hoursaroundsunriseandsunseteachwith
abackgroundconsistingofskybackgroundradiation,starsandpossiblyscatteredlightfromthemoon.A
detailedanalysisoftimeavailableasafunctionof latitudeandtimeofyearispresentedinAppendix7.1.
Thedimmesttarget(pA=0.1cm_)wasusedtorepresentthemoststressingcase.Targetorbitswere
reviewedinthe500kmto1500kmaltituderegimeforacquisitionatzenithanglesofupto60°. From
this,themoststressingorbitselectedwasforadebrisparticleatanaltitudeof 1500kmand60° zenith

angle resulting in a desired acquisition range of 2500 km and an angular rate of 2.4 mrad/sec. This

corresponds to a star having a visual magnitude of 18 or 19; quite dim.

Acquisition background information was taken from several sources. Sky glow information was
derived from a review article by Gerald Daniels ("A Night Sky Model for Satellite Search Systems,"Optical

Engineering," v16 no.l, Jan-Feb 1977) and from Gene Rork of Lincoln Laboratory (private

communication) resulting in a value for airglow of 1.6x10 6 watts/cm2-s within the wavelength band of

0.4 _rn - 0.7 lain. Scattered moonlight several degrees away from the direct moonlight is of the order of

10xl0 "6 w/m2-sr in the same band. Finally, the density of stars of magnitude 18 or 19 or brighter that

would be seen by the camera while staring for debris particles was calculated. These densities are shown in

Figure 7.1. The right hand ordinate in the figure shows the number of stars of the specified magnitude or

greater that would fall into 50 larad and 100 larad pixel FOV-sizes appropriate to this system. This indicates
that a large fraction of detector pixels will contain a star as bright or brighter than the target. Fixed

background processing (such as frame-to-frame subtraction) will be required to eliminate these returns.

7.4.1 Canonical Passive Acquisition System

A preliminary study of requirements and hardware for providing the necessary acquisition and

tracking for ORION was undertaken and indicates that a system utilizing current technology could provide

the requisite acquisition and tracking. A baseline set of parameters for an operational system is shown in
Table 7.2.

The wavelength band appropriate to sun illuminated tracking was taken to be from 0.4 lun to 0.7

lain. No attempt was made at this stage to optimize the receive band with detector responsivity and

background noise.

Table 7.2

Baseline Parameters for Passive Optical Acquisition System

TELESCOPE

3.5 m Diameter (area - 9.6 m2)

Angular velocity maximum > 0.5 °/sec

FOCAL PLANE

Pixel Size ~ 50-100 i_'ad
Number of Pixels ~ (25 x 25) to (50 x 50)

Dwell Time ~ 10-2 secs

Pixel Noise < 10 electrons/pixel
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The diameter of the receiver (telescope) was selected as 3.5 m -- reasonably large but not

extraordinary. The Air Force is currently procuring two such systems, one for Kirtland AFB and one for the

Maul Optical Station. The mount needs to be able to accelerate for the transition from "stare" to "chase"

and to follow the target acceleration as it moves along its orbit. The transition acceleration will dominate;

an estimated few degrees/sec 2 should suffice to permit the telescope mount to catch up to the moving target
within a fraction of a second and within an angle not much greater than the tracker field of view. The

Firepond telescope with its 1.2 m diameter aperture has a capability of 15 deg/sec angular velocity and 10

deg/sec 2 acceleration.

Atmospheric transmission at zenith angles of 60 ° over this visible band was taken as 0.69 (0.83 at

zenith) based upon models used here at Lincoln Laboratory. A MODTRAN calculation done by Jim Reilly

for this study indicated a higher zenith transmission of 0.9 so we chose the more conservative value. At
these levels of trans-mission, the effect is not strong. The system optics were taken to have a transmission

of 0.5.

Focal plane parameters were taken from those of current Lincoln Laboratory fabricated CCD focal

planes. The quantum efficiency is 0.65 in the visible and the pixel read noise is 10 electrons/pixel for rates
of 2 megapixels/sec. Current arrays are 2500 x 2000 pixels with 8 readout ports. The pixels are 25 t.tm

square and would utilize on-chip binning (available on these chips) for this application.

The system parameters used in this study are listed in Table 7.3.

Table 7.3

Reflected Sunlight Acquisition Parameters

(Baseline Stand-alone Optical System)

TARGET
Area = 1 cm 2

Reflectivity = 0.1

Angular Velocity = 2.4 mrad/sec
SUNLIGHT ILLUMINATION

Wavelength band 0.4-0.7 I.tm

Intensity = 1000 w/m 2

Atmospheric transmission = 0.83

(zenith)

BAGJL6B.O..U/:_
-- 1.63 E-10 w/cm 2 --dark night

-- 10 E-IO * -- moonlight

-- 2.5 E-4 --daylight

SYSTEM PARAMETERS

Aperture area = 9.6 m 2 (3.5 m dia)
Obscuration < 10%

Optical transmission = 0.5

Detector Array:

Quantum efficiency = 0.65

Read Noise = 10 electrons / pixel

Dwell Time = Pixel IFOV / Target

angular rate

* Moonlight background depends primarily on the LOS zenith angle. Above a zenith ol 60 ° the in-

band moon background is less than 10E-10 w/cm 2.

The performance of such a system as a function of pixel field of view (FOV) is shown in Figure

7.2. In this figure, the target is the smallest (dimmest) target in the target set (1 cm diameter, 0.1

reflectivity). It is at an altitude of 1500 km and being observed (acquired) at a zenith angle of 60 ° and range
of 2500 km. In this analysis, the telescope is pointing to a fixed position in space (staring mode) and the
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target moves across its field of view. The dwell time of the array is set equal to the time it takes this

target, at its range and zenith angle, to cross the pixel FOV represented on the abscissa. Since this target is
the dimmest in the set and at longest desired range, this figure represents the most stressing limit. Other

targets will be brighter and thus give a larger signal or be the same brightness but closer resulting in a

stronger collected signal. In operation, the dwell time would be constant at a value corresponding to that

most stressing target and the specific pixel FOV for the focal plane.

Figure 7.2 shows a number of curves. The number of photo-electrons from the target and from the

(dark) background are shown as broken lines. A total noise standard deviation (sigma) is calculated from

adding the variances of the background photon noise in electrons and the focal plane read noise (cr R = 10

electrons) and is shown as a dotted line. The solid line represents the S/N ratio: the ratio of signal photo-
electrons to the total noise standard deviation (sigma) also in photo-electrons.

As indicated, the maximum signal-to-noise ratio is about 2 for this most-stressing case and occurs

at a pixel FOV of about 20-60 Ixrad (with dwell times of about 8-25 msec). It is recognized that operation

at this signal-to-noise ratio is marginal. It represents a probability of detection of 0.7 and a false alarm

probability of 0.1. (Adjusting the threshold to increase the probability of detection would also increase the

probability of false alarm.) However, it is anticipated that a fairly simple multiple hit track initiation

algorithm could be used to process multiple detections which would increase the probability of detection
without increasing the probability of false alarm. Furthermore, the target chosen is extremely dim (at the

range chosen it corresponds to about a 19th magnitude star) and an increase in brightness by only 50%

would increase the probability of detection to about 0.99 with no increase in false alarm probability for

single pulse detection.

In Figure 7.3 is shown the same plots for a small target at an altitude of 1000 km with a range of

1700 km at a zenith angle of 60*. The peak S/N ratio remains at about 2 since, while the range decreases,

the angular rate increases and the dwell time decreases.

Figures 7.4 and 7.5 show the effects of zenith angle and background. As can be seen in Figure
7.4, the effects of zenith angle from 0 ° to 60 ° are not large giving good flexibility in locating targets as

early as possible. In Figure 7.5 is shown the effect of full moonlit night on background which drops the

signal-to-noise ratio by about a factor of 2 at the maximum of the signal-to-noise curve. This is significant
but not overwhelming; somewhat brighter targets than the most stressing would still be detected and

tracked.

7.4.2 Acquisition Rates

The current Lincoln Laboratory CCD focal plane referred to above is a 2500 x 2000 pixel array

with a pixel size of 25 Inn. Using this size directly for a 40 larad pixel FOV would imply, for a 3.5 m

telescope, an f/number of 0.15 -- quite impractical optically. However, if 12x 12 sub-arrays of these p ixels

were binned into a super-pixel, it would be 300 lain on a side and for a 40 grad super-pixel FOV, the optical

system would be about f/'2 -- much more practical. This binning can take place on the chip so that the
read-out noise for a super-pixel remains at 10 electrons/read. With 12x12 pixels per super-pixel, the whole

array would have 200x167 super-pixels. The array FOV becomes 8 mrad x 6.67 mrad which is about 50
times that of Haystack. The acquisition rate will depend upon the shape of the FOV and the distribution of

orbit angles but it will be at least 8 times that of Haystack thus essentially equalling (perhaps exceeding)

the number of targets acquired by Haystack per day.

7.5. Operation of an optical acquisition system for ORION

A concept of operations will be described in this section for the canonical optical system defined

earlier to act as the "debris f'mder" for the ORION laser. As part of the concept, the requirements/capability

to perform all the functions tabulated in 7.1 will be stated.
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7.5.1. Autonomous Detection of Debris

It is essential for the optical system to have adequate time to acquire, track, discriminate and

handover the target to the laser. The discrimination task will take several minutes to complete and hence it

is essential for the optical system to acquire the debris early in its apparition. Hence, the optimum strategy

is for the optical system to stare at -30 °- 450 elevation. Since the optical system has a FOV of --0.5 °, a

scan is not needed though a "step-stare" scan could be used. The stare will keep the stars invariant in the

FOV. The choice of azimuth is dictated by the location of the optical system and the inclinations of the

orbits that are of prime interest. Since most of the debris are in high inclination orbits, a optical system on

or near the equator could point due north or south at 30o elevation for detection. If however, the optical

system is located in say New Mexico, at 32 onorth latitude, pointing due south is recommended as it

improves the inclination coverage significantly (see Appendix 6.1).

The optical system should detect an average of 40 - 60 debris targets/hour between the altitudes of

500 Km. and 1500 Kin. However, this has to be established by experiment in Phase 2. Unfortunately, half

of these targets will be setting. Out of those left, only 1/3 might come into the field-of-view of the laser.

If a higher detection rate is desired, the optical system could conduct a "step-stare" scan.

7.5.2. Precision Tracking of Debris

Once a debris target is detected the optical system has to initiate tracking in what is essentially a

_'ansition from a 'stare" mode to a "chase" mode. Such stare and chase operation for debris has been

developed and demonstrated at the Experimental Test System (ETS) in New Mexico.

After the transition to "chase," the acquisition system will be continuously tracking the debris

target. In the acquisition mode, with super-pixels of the order of 100 Ixrad, the tracking accuracy can be

expected to be in the range of a fraction of the super-pixel size -- the fraction depending on the S/N.

The Pusher Laser will most likely require a pointing accuracy in the region of 1 I.trad. This could

be accomplished by a separate optical tracker (passive or active) with appropriately sized detectors or focal

plane arrays so that the overall field of view is sufficient to accept handover from the acquisition system
(with its wacking jitter/accuracy) and sufficient resolution to achieve the required precision tracking

accuracy. Indeed, with the focal plane array used in the acquisition system as described above, it may be

quite feasible to reconfigure the focal plane array while still in acquisition track to utilize the much smaller

pixels (non-super-pixels). These might have a pixel field of view in the few larad region and would afford

the required precision tracking required..

7.5.3. Discrimination

This is probably the most time-consuming and complex task for the optical system. The

requirements are as follows:
1. Verify that the debris is in an ascending pass.

2. Ascertain the catalog status of the debris in track.
3. Ensure that the estimated size and, if required, dynamics of the debris are within the capability of

the laser.

4. Measure periodicities in the signature.
5. Check whether the debris will transit the laser field of regard for the time interval required by the

laser system to successfully irradiate it.
6. Check that the debris will be sun illuminated until handover is complete.
7. Guarantee ttu2t no other resident space object, and in particular, no payloads will be illuminated

by the laser inadvertently during the engagement.
8. Guarantee that no airplane intercepts the laser beam during the engagement.
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The f'LrStsix of these can readily be accomplished by the optical system during the acquisition and track
period.

7.5.3.1. Correlation with the Catalog

The data recorded during the transit of the debris through the FOV is adequate to discem whether
the target is in an ascending pass. If not, the search can be resumed. As soon as - 75 seconds of metric

data (or -15 observations) are taken, an initial orbit can be estimated and checked to see if the debris will be

within the field-of-view of the laser for the required time interval during this apparition. If not, the optical

system can re_urn to its search. A correlation with the catalog should be done next. The data quality is

adequate to yield a good estimate of the orbital plane of the debris and of its position in space, both of
which can be checked against all the RSOs in the catalog. This task should take no more than 5 seconds

with a modern work station and appropriate architecture of the software. If it is a known large RSO, the
search for debris can be resumed. If it is a cataloged piece of debris, a real-time decision needs to be made
based on the following:

1. Is it of interest to the ORION system - depending on strategy and size?

2. Who nominally "owns" the cataloged debris? Does the ORION system have "permission" from
the "owners" to irradiate their debris?

Given a positive answer to both questions, the next step can be taken.

7.5.3.2. Size and Dynamics

As the tracking of the debris piece continues, the optical system must estimate the mean size and

perhaps a variance. The size can be approximately estimated using an average photometric phase model for

debris. There is considerable doubt about the "average" value for albedo to be used which directly affects the
estimate of size. It is recommended that, during Phase 2, a large sample of debris be examined with

particular bias towards the denser population regions to assess an average albedo. Techniques for decoupling
the area and albedo have been developed _. The signature data must also be analyzed through the mechanics
of algorithms like auto-correlation or Fourier transform to determine any periodicities. The estimation of
size is significantly affected by periodicity in the signature and, further, debris are known to have
periodicities ranging from -4). 1 sec. to >>30 see.

The value of estimated periodicity in the signature lies in the fact that it will be significantly
affected by the impact of the laser energy and, hence, it can be used as an indicator of the success of the
engagement.

The inferred size of the debris must be compared to a threshold set for the ORION system to decide
on the engagement. The periodicity may prove useful for the same purpose.

7.5.3.3. Inadvertent Illumination of RSOs

A major concern with the ORLON system is its potential for inadvertently illuminating and

damaging a payload in orbit. This concern is motivated by both treaty implications and the cost of
"pienaty_e".

Once the debris has passed the t-dters in the previous sections and deemed suitable for engagement
by the ORION system, a detailed prediction needs to be made of the part of the trajectory that the laser

would illuminate. This prediction has to be compared with the known position of the entire catalog of
payloads to guarantee that inadvertent illumination does not occur. Further, US Space Command may

W.I.Beavers, L.W.Swezey : "Photopolarimelric Object Characterization and Size Measurement", MIT
Lincoln Laboratory Project Report STK-234, 11 April 95.
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require that a real-time check be made with a small catalog of important domestic payloads to preclude

damage or interference.

A question that remains is whether it is adequate to check against the locations of payloads or
whether rocket bodies and other large objects in the catalog must be included in this check. The concern

stems from the possibility of inadvertently causing a rocket body with left-over fuel to explode. Part of the

answer is political. 1"he technical part of the answer will come from an analysis of the impact of the laser

on the debris Matrix Target F.

The Airborne Ballistic Missile Defense laser (ABL) being built by AF Phillips Laboratory faces

some of the same issues and the solution would be useful to ORION. Other systems like SBV/MSX,

SWAT, Firepond laser and AMOS/Maul laser system have resolved many of the same issues.

This is a major issue for the ORION system. It will affect decisions on site

Location and modes of operation.

7.5.3.4. Aircraft Avoidance

Regardless of the wavelength of operation of the laser, the ORION system has to ensure that it

does not inadvertently illuminate an aircraft. Unlike RSOs, aircraft do not follow predictable trajectories. It

is prudent to choose a site where major air traffic lanes can be avoided. But, in any case, the ORION

system needs a real-time means of detection and avoidance of aircraft.

Often a local search radar is used to minitor aircraft in the area, to warn them off or to avoid

illumination in their direction. Since the FAA is shutting down a significant part of their radar system due

to reliance on GPS technology, such a system may be available to the ORION system "free". In addition,

it may be possible to include a wide FOV optical system operating in advance of the main laser to provide

additional target avoidance capability.

This is a major issue for the ORION system. It will affect decisions on site

location and modes of operation.

7.5.4. Optical System - Laser Handover

Once a debris has passed all the l-dters listed above, it has to be handed off to the ORION laser for

irradiation. The process in concept is very simple as the precision tracking of an optical system is adequate

to narrow the search volume for the laser. There are two types of handover.

A real-time handover occurs when the optical system and laser are collocated. In this case, the

only issue is the mutual calibration of the laser and the optical system. This is not a major issue as
substantial experience exists at MIT Lincoln Laboratory and other places. The optical system continues to

track the object until a successful handover has taken place.

A non-real- time handover occurs when the optical system and the laser are not collocated. In such

a case, the optical system will have to determine a precise orbit and transmit it in some form to the laser

system. The accuracy of the prediction is an issue that is being studied by AF Phillips Laboratory. Again,

precise pointing calibration of both systems is a solvable concern.

Concerns pertaining to the handover for both real-time and non-real-time can be addressed in Phase

2 using the collocated and spatially dispersed set of MIT Lincoln installations.
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7.5.5. Assessment

A critical issue is the assessment of the effects of the laser irradiation on the debris. The questions
that need to be answered are:

1. Did the target interact with the laser energy?

2. Can the mass, area/mass ratio or some similar parameter for the debris be estimated?
3. Can the characteristics of the laser-debris interaction be measured or inferred?

4. What is the perigee bin of the target post-irradiation?

5. Is there a threat to a manned asset as a result of the orbit change?

There are four methods that can be used to perform these assessment tasks:

1. Measure the plasma "flash" created by the laser-particle interaction.
2. Measure the "instantaneous" Doppler change of the target as a result of the interaction.

3. Measure the change in the periodicity of the signature.
4. Compare the estimated orbits pre- and post-irradiation.

The plasma "flash" is expected to occur on every pulse of the laser that hits the target. A visible

wavelength optical system, if collocated with the laser, can measure this effect. The flash will clearly

indicate that the target has been hit. It is unknown whether the plasma will be quenched rapidly enough
such that the interaction due to each pulse can be monitored.

The Doppler of a target can be measured very precisely by a coherent laser. Also, depending on the

accuracy of the track, Doppler can be infened from range measurements. In either case, if the target is
monitored while being irradiated by the laser, the departure of the measured Doppler from prediction based

on the lyre-radiation orbit is a clear and rapid indicator of laser effects. This technique is routinely applied at
Lincoln radar systems for monitoring orbital maneuvers.

Continued tracking of the debris post-radiation will yield an estimate of the periodicity of the
signature. However, it is quite unlikely that the debris target will continue to be illuminated by the sun and

probably a laser or microwave radar system would have to provide the tracking. The periodicity is very
likely to have changed as a resdt of the laser-debris interaction and can both confirm the interaction and,
perhaps, provide a quick but poor estimate of the moment of inertia of the debris. Further, the laser

tracking data can be Im3cessed into an estimate of the orbit which, when compared with the pre-radiation
orbit, can yield the following.

1. An estimate of the total velocity change imparted to the debris.
2. The perigee bin into which the debris has been moved.

3. An estimate of the mass of the debris if the intensity of the laser at the location of the debris is
known and the size of the debris is known.

The new orbit must be used immediately to assess whether the threat to a manned satellite has

been increased. If the new perigee height is lower than that of the manned asset, but is >200 Kin.,

cataloging of the debris by further tracking is essential so as to provide adequate warning of close
approaches.

7.5.6. Miscellany

Book-keeping of the debris merely refers to creating a histogram of the number of objects irradiated
vs. the perigee bin in say 100 Kin. steps before and after. This is to ensure that the risk in lower altitudes
is not unduly increased and applies only in the ease of the "steady rain strategy".
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Thethroughputof the optical system is governed by the approximately 5 minutes of total tracking

plus the search time to find the debris. The best it can be with one optical system is 12 objects per hour or

-50 objects/day given the requirement of dawn and dusk conditions.

7.6 Summary and Conclusions

The ORION system has a requirement for an autonomous system or systems to acquire the debris

targets of interest and to track them well enough to hand over to a precision optical tracker which will point
the Pusher Laser. The Haystack radar has the capability of acquiring the most stressing of these targets

(reflectivity r = 0.1, area A = 1 cm 2) at a rate of about 6 per hour.

A passive optical system operating in the visible band detecting reflected sunlight in the terminator
mode has been analyzed. An optical system with a 3.5 meter aperture utilizing current technology can

detect these targets at altitudes of 1500 km and zenith angles of 60 ° corresponding to a range of 2500 km.

With an existing focal plane, and a lot of processing, a total FOV of 8 mrad x 6.67 mrad could be

implemented which could result in useful acquisition rates of at least 12 per hour or -50 per day (-4 hours
of terminator observation time per day). This is probably more than enough to saturate the capabilities of

the Pusher Laser and remain reasonably competitive with a radar system.
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TOPIC 1: OVERVIEW OF INTERRELATIONSHIP AMONG LASER AND TARGET

PARAMETERS

The purpose of this section is to tie together the various laser and target illumination

parameters in the ORION problem in such a way that the operating points we have
selected make some kind of sense, and so other operating points can be selected with

clear awareness of the "maneuvering room" in ORION's multi-parameter space.

This note uses relationships developed in later sections, but its proper place is at the

beginning to provide a roadmap to tie those pieces together conceptually.

Diffraction

In vacuum, the relationship between near and far field irradiance scale parameters is

governed by diffraction.

We use Siegman's beam quality factor N [he calls it M2: see Siegman 1993] to describe the

inevitable degradation of beam quality from the ideal, a concept which is really only

appropriate for Gaussian beam propagation, entering propagation expressions for such

beams as if the wavelength were N times longer than it is.

There are two special near and far planes at which it is easy to relate beam intensity
distributions to each other. For Gaussian beams, it is the pupil plane of the focusing

optic at z=0 and the plane at the Rayleigh range

_D2 [1]
ZR- 8N_.

where ds = Db/_/2. If one focuses harder than that, the focal spot moves in to Z<ZR, but

never gets smaller than

aN_,z [2]

Diffraction: d s _ Db

where a = 4/n. In this case, if it is not true that ds <<Db, Eqn. (2) is also not exactly true

either and some larger spot size results from going through the exact analysis. If we

define a fictitious quantity dso according to:

dso=

then ds itself can be found from:

] [31

1 1 1

ds2 ds2 D_ [41

This distinction is important because Eqn. [2] is in error by several percent for the

ORION case. However, for scaling purposes, we will use Eqn. [2] as if it were exact.

From Eqn. [2] we can then state:

149



IsCb_-W__W(oN z)
where T is the one-way atmospheric transmission.

The Target Effects trendline linking beam intensity in the atmosphere to pulse duration

In section 1, we show that the fluence Do or intensity Io which are optimum for

producing maximum momentum coupling coefficient Cm = mAv/W is given by

or

[6]

where a -_ 0.45 for all materials as pulse duration x varies from about lps to 1ms, and
C = 2.3E4.

We also fit the response of an individual absorber around Is o in §2, showing that a good
fitting function is

3

log Cm-- log Cma x - [1.25 (log _) , I < Io

log C m - log Cma x - [0.36 (log _o)], I> Io

It is important to realize that Eqn. [7] means that C m goes like I-_ for I>>Io, [where 13=

0.36 in the example plotted and 1/3 typically] and that this means that the actual

momentum transferred continues to increase as I increases, going like

mz_v _ I 1-_ = 12/3.

The optimum intensity is the one for which the expensive laser joules are used most

efficiently; howver, in a situation where there is energy to burn and the situation is
urgent, higher intensities than Io do more work.

Assuming we want to achieve optimum coupling rather than maximum momentum

transfer, Eqn. [6] implies that Is = C/x l-a, which can be combined with Eqn. [5] to give an

expression which relates near-field beam intensity to laser pulsewidth given a choice of
range, wavelength and mirror diameter Db:

C(aN) 2 2 Ca2 [ .z12
Ib_71-°t = T [_262]- ST tD2J

[8]

where S = 1/N 2 is the so-called "Strehl Ratio". We have expressed this relationship

leaving Db rather than ds a free variable because we believe the choice of Db should be

based on economics rather than falling out of some physics relationship. Note the
strong Db -4 dependence.

In § 5 and § 9, the dotted "target effects" line is based on an assumed choice of Db, and

that choice is the smallest mirror which can just avoid causing Ib to exceed the
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threshold for Stimulated Raman Scattering and nonlinear phase shift in the

atmosphere.

As an example, if o_ = 0.45, a = 4/_, _ = 1.06 Bm, z = 1500 km, T = 0.85, N = q2 (Strehl ratio

= 0.5) and Db = 600 cm, the target effects trendline is Ib z055 = 143, which is approximately

the dashed line plotted in the "maneuvering room" figure of §9. In that Figure,

maneuvering room for the laser operating point is nearly absent, by design, to produce
the most efficient and least costly design. However, choice of a larger mirror provides a

lot more maneuvering room. The overall decision is a cost tradeoff, which is beyond

the scope of this subsection, but which is treated in §0A following.

What are the limits to Ib?

Limits to Ib in the atmosphere are Stimulated Raman Scattering (SRS), Stimulated

Brillouin Scattering (SBS), Stimulated Thermal Rayleigh Scattering (STRS) and

nonlinear refraction (n2).

SRS is a nonlinear process occurring with strong optical electric fields in which two

photons - a laser photon and, usually, a red-shifted photon called the Stokes wave, are

coupled by momentum contributed by vibration of a Raman-active molecule.

Monatomic gases like argon do not produce SRS. In the atmosphere, nitrogen is the

main contributor. For pulses longer than l_ts, starting from sea level, SRS limits Ib at

530 nm to about 1.3 MW/cm 2. This limit is proportional to the reciprocal of the SRS

gain, which is in turn proportional to the Stokes frequency, so the Ib limit is

approximately proportional to wavelength, and becomes about 30MW/cm 2 for long

pulses at 11_tm. As pulse durations become equal to and then shorter than the
relaxation time of the molecular vibrations responsible for SRS gain, a gradual rolloff

occurs as shown in the "maneuvering room" figure, eventually allowing much higher

intensities to propagate. By the time 100ps is reached, It, = 50 MW/cm 2 is permissible at
530 nm. This choice exceeds our n2 limit (see below) at sea level, but is very acceptable

when the beam starts from 6kin elevation.

SBS is a nonlinear process in which the laser photon and the Stokes photon are coupled

by a sound wave (phonon) in the Brillouin-active medium. One hears of SBS

happening in liquids more often than in gases, but SBS competes with SRS at high gas

pressures, and is in fact a main contributor to the procedure we will suggest (§ 11) for

building a 100-ps laser. On a vertical path through the atmosphere for our laser

parameters, SRS is effectively the only concern, since pressure drops so quickly, and

pressure of a few atmospheres is required for SBS to be competitive with SRS in gases.

STRS is the result of the formation of minute diffraction gratings in the air due to

minute intensity differences in the beam causing thermal density variations on the

scale of a few wavelengths. These stimulate their own growth by causing greater

intensity ripples downstream. The resulting grating can scatter the beam dramatically if

conditions favorable to strong growth are not avoided.

Nonlinear refraction is the process whereby molecules or atoms of a medium are

distorted by the high electric fields of an intense optical wave sufficiently to change the

refractive index - usually by increasing it. The result is an optical phase shift in the beam

proportional to local beam intensity, which results in beam breakup in solid state laser
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systems. We have set a limit of one radian phase shift as being the limit of concern

because as beam intensity varies from zero at the edge to maximum in the beam center,

(_ =1 corresponds to K/6 wavefront error and, depending on assumptions about the beam

profile, can cause a 10% loss in central beam intensity on target. We have used the best

combination of theory and experiment available at the moment to estimate that half of

the long pulse n2 relaxes away for very short pulses. However, accurate resolution of

this question from a theoretical standpoint should definitely be a subject of near-term

future work. For long pulses, the n2 limit is more than an order of magnitude above
that placed by SRS.

However, a very attractive operating point exists at 100ps where the SRS limit has

abated by about an order of magnitude, and here, n2 is the deciding factor for all
wavelengths.

Why this operating point is attractive will be discussed in the following subsection.

Why short pulses go with reduced pulse energy

We now ask what Eqn. [8] implies for laser pulse energy W. This is important because

the cost of a laser tends to scale much more strongly with W than with total power
P = fW in the range up to perhaps 10 or 15 Hz in which we are interested.

Since W = Ib(_Db2/4)% Eqn. [8] can be re-expressed

_C(aN) 2[ Kz 12 Ca I- _,Z 12
W- 4T LGJ = S--TLDBBJ [91

This relationship shows that if mirror size Db is fixed, dropping the pulsewidth from 40

ns to 100 ps will reduce laser pulse energy from 23 k| to 1.5 kJ. This change should

produce a much less expensive laser, providng that complex (e.g., grating pair) designs

are avoided and simple (e.g., SBS-SRS cascade) designs are employed.

Universal Maneuvering Room plot

We are now in a position to make a "universal maneuvering room plot" based on the

detailed work in the subequent sections §4-6 regarding STRS. Several of the boundaries

limiting ORION laser design maneuvering room show the approximate behavior Ib

K. Accordingly, the final two figures attached are plots of Ib/K, on which the SRS limits,

the n2 limits and the whole beam thermal blooming limits for a particular mirror size

are very nearly single lines and the STRS limit is much more closely bunched.

In order to show the target effects lines as single lines for two mirror diameters, we note

that Eqn. [8] of this section shows that if Ib/_, is constant, Db _ _1/4. So, we have selected

mirrors of the appropriate relative size: a 6-m diameter mirror at 1.06 _m corresponds

to a 11-m mirror at 11.1_m in its ability to produce a target illuminance distribution for
optimum coupling when we hold Ib/K constant.

Using this plot, the Ib _ _2 behavior for target effects at a fixed Db is made more clear.
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Glossary

a

f

= I_

S

S

T

Av

W

Z

Constant relating far field to near field parameters

= 4/7¢ for Gaussian radial profile beam

= 2.44 for uniform "tophat" radial profile beam

o_ exponent in Eqn. [6] expression for optimum coupling fluence

b subscript describing the "beam" or near field irradiance pattern

C constant in Eqn. [6] expression for optimum coupling intensity,

=2.3E4 averaged over all metals and nonmetals

Db near field laser beam diameter (in the atmosphere)

ds far field laser spot diameter (on the target)

laser repetition frequency

fluence, J/cm 2

laser wavelength, cm

subscript describing the "spot" or far field irradiance pattern

1/N 2 , the Strehl ratio

laser pulse duration

one-way atmospheric transmission

velocity increment imparted to target, cm/s

laser pulse energy

range to target, cm
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TOPIC 2: HOW PHYSICS _ COST ALGORITHMS INTERACT TO PICK MIRROR DIAMETER

Executive Summary

The purpose of this monograph is to indicate how we can use approximate costing

information to estimate optimum diameter of the ground-based beam launch mirror, given

the goal of minimizing total system cost. This section is expanded and revised from the first

version which you received earlier, to include a very important group of cost algorithms

developed by Jim Reilly, which enabled us to measure the cost of repetitivelly pulsing the
ORION laser.

Previously, laser cost was estimated single pulse cost alone. The new results for optimum

Db and system cost with solid state lasers are not very much different from the old ones.

What has changed can be summarized in 6 statements:

1. Our results tend toward smaller mirrors than we considered to be desirable at the

beginning of ORION Phase I, motivated as we all were by an instinctual hatred of wasting

laser energy. Optimum mirror sizes vary from about 3.5 m at 400km range to about 7m

for 3000 km laser range, when the lowest-cost system options are considered.

1. It is cheapest to achieve a given average laser power level (for lasers suitable for ORION)

by going to the highest feasible repetition rate. For example, a laser average power of

30kW is more cheaply achieved by building a 300-J-per-pulse laser operating at 100Hz

rather than a 30-kJ, 1Hz unit. All cases we calculated gave similar results: you want the

highest repetition rate you can get to achieve lowest laser cost (Figure 1). For the present

analysis, we chose 100Hz repetition rate for all cases, because the costing algorithms may
not be trustworthy much above this frequency, and because experience indicates that

much higher rep rate is difficult to achieve in large systems.

2. It is far cheaper to use the shortest feasible pulsewidth. This point is illustrated by

comparing the cost of 100-ps and 100-ns solid state laser options in Table 1, which shows

that the optimum mirror diameter is about 50% greater, and the cost for any given laser
range about 3 times greater, for the longer pulse option.

3. Continuous (cw) lasers are competitive with repetitively pulsed solid state lasers for the

ORION project. We studied a 1.3-_m iodine laser option, and found it to be competitive

with the Nd:glass option. We do not yet have reliable costing algorithms for RF-FEL's,

and there is no a priori reason to assume they cost out the same as a high power cw laser.

However, if they do, and if an RF-FEL can be built whose output is a continuous string of

micropulses (100% duty cycle, not a series of macropuls¢_), then coupling to the target

should behave like cw, and the RF-FEL would also be competititve. The missing piece is
costing for RF-FEL's.

4. For the lowest cost alternatives studied, the optimum mirror diameter is about 4 m, and
minimum system cost for 600 km laser range about $30M. This mirror diameter is

essentially identical to the 3.5-m diameter of the system at the Starfire Optical Range.

156



The details are summarized below.

Table 1: Summarizing Optimum ORION Parameters

Laser Type

cw

(iodine, 1.3gm)

Solid State

(1.06_tm, 100ps)

Solid State

(1.06pm r 100ns)

Range (km)

400

800

1500

3000

400

800

1500

3000

400

800

1500

3000

Mirror Diameter

Db(m)

7.8

10.5

3.5

4.5

6.5

8.2

11

15

Total Cost

(FY95 $)

25 M$

46 M$

81 MS

150 M$

25 M$

39 M$

60 M$

98 M$

71M$

116M$

184M$

312M$

Laser Average

Power (W)

500 kW

900 kW

1.8 MW

4.6 MW

32 kW

8O kW

160 kW

430 kW

210 kW

525 kW

1.0MW

2.2MW

5. Average power level required for the cw case is about 10 times that for the solid state

option. It was apparent many months ago that, because lkW/cm 2 must be delivered to

the target to obtain efficient thrust, the cw case involved MW-level power. We assumed,

incorrectly, that the cost of achieving such a power level would exclude this option.

There has been no change in the underlying target coupling calculations during this

time.

Comments:

So why do the costs for the solid state laser case still come out about the same as before?
Because the cost of the laser head for those dominates the cost of repetitively pulsing.

(Just the opposite is true for repetitively pulsed gas lasers: Figure 2 attached illustrates this

point. ) This means that cost optimization gives the same answer as when flow loop costs
were not included for the solid state case. Note that output power at 100Hz rather than

output pulse energy is now plotted on the right-hand vertical axis.

Why are the minimum numbers for a particular range a little higher than before?

Because we added a 10% contingency factor to the costs this time.

Caveats:

1. This analysis will not necessarily minimize system operatin¢ cost.

2. The work has not yet been done to permit this analysis to include detailed cost

breakdown for guidestars, adaptive optics and target tracking. This fact prevents us from

extending this analysis to excimer lasers at the present time. It is assumed that laser

rather than radar acquisition is implemented.

3. This analysis does include implicit assumptions such as location of the laser station on
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Earth, choice of laser parameters to achieve best momentum generation on the

distant target together with avoidance of SRS and other nonlinear optical processes in

the atmosphere, and choice of average power level appropriate to clear the 1 - 20-cm

debris population in 2 years, but not adequate for single-pass knockdown of the majority
of debris targets in our Target Matrix.

As more detailed cost algorithms become available, new data can be put into this procedure,

and better estimates obtained. However, it is useful to point out what ORION cost estimates
indicate right now.

Basis for Costs Ouotefl

There are two main costs in the ORION system, CL and Cm, respectively the cost of the laser

system and the ground-based beam director with adaptive optics. First-cut evaluations of

these are now possible due to the efforts of Linda Vestal, and inputs from Claude Phipps
and Jim Reilly.

For the laser, 4% electrical efficiency is assumed.

Beam Director

For the mirror:

Take
Cm = B Dbq [1]

Db = mirror diameter in cm

At this moment, the best numbers we have for the coefficients and exponents in mirror cost

are [please note, I have converted meters to cm in Linda Vestal's mirror cost formula for
consistency]

B = 74.5

q = 1.9556

Solid state laser cost

Where W = laser energy in joules

4

we have CL = 1.1 X Ci [2]

i=1

with the following cost elements:

Laser head,: C1 = $1.02E6*W °.45

Power supplyb: C2 = $3.2E4*(fW/1000) 0.85

Cooling gas flow loopb: C3 = $6.8E4*(fW/1000)0-88,(f/1000)0.083

System integrationb: C4 = $6.0E4*(fW/1000) 0.256

[2a]

[2b]

[2c]

[2d]

a Source: C. Phipps study of the Lawrence Livermore (LLNL) Nova-Athena-NIF (National Ignition Facilit )
constru, ction and engineering design sequence, plus recent input from Lloyd Hackel at LLNL re ardin 1
iu-ns laser system he has built for an illuminator at Starfire Optical Range. g g 00-J, _Hz,

b Source: J. P. ReiUy
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_as laser (excimer or CO7) cost

Where W = laser energy in joules

7

we have CL = 1.1 _ C i

i=1

with the following cost elements:

Laser headb: C1 = $1.2E4*(25W )0.19

Power supplyb: C2 = $3.2E4*(fW/1000) °'s5

Cooling gas flow loopb: C3 = $6.8E4*(fW/1000)°'88"(f/1000) °'°83

Pulse forming networkb: C4 = $4.0E3 *W°'918

Switchesb: C5 = $6.0E3*W°875(f/1000) 0.4.

Opticsb: C6 = $1.8E4 *W0'14

System integration b: C7 = $6.0E4*(fW/1000) 0.256

[31

[3a]

[361

[3c]

[3d]

[3el

[3fl

[3gl

Pulsed laser cost determination

Now, we use the analysis in in §0 which employs the physics of the problem, to connect the

required laser parameters on the ground to the target intensity required to form plasma and

obtain optimum coupling, particularly to relate laser pulse energy W to mirror diameter Db:

Ca [_z12 (Z
W =_ Tt ba z [41

In this expression, C = 2.3E4 is a constant derived from optimum target coupling

o_ = 0.45 is an exponent derived from optimum target couling

"¢ is laser pulse width

T is atmospheric transmission (0.85 for a vertical path)

S is Strehl ratio (1/N 2 in § 0) = 0.5

a = 4/_

K is laser wavelength in cm

and z is range to target in cm.

To obtain our total system cost estimate, we add laser cost to beam director cost

Ctot = CL + CM" [5]

Substituting Eqn. [4] into Eqn. [5] gives a plot of ORION system cost versus mirror diameter

Db, for which there is _ a minimum. (See Figures 3 and 4).

The physical reason for this arises from what happens at the two extremes: for very large
mirrors, a small spot on the target results in a small laser pulse energy, but these huge

mirrors are very expensive (and probably impossible to build). In the limit, system cost

dominated by mirror cost goes up about like Db 2. At the other extreme, a very small mirror

gives a large laser spot diameter in space, requiring huge laser energy to ignite a plasma. In
this limit, system cost dominated by laser cost goes up about like 1/Db, because Eqn. [3]

requires W _ 1/Db 2, but cost (Eqn. [2a]) goes up about like qW. 159



Visible Region CW laser

We consider the case of a cw iodine laser (_,=1.3 _tm), a case currently receiving strong
attention in the USAF.

Elsewhere, calculations by J. P. Reilly have shown that Is = 1 kW/cm 2 is the appropriate

target intensity for the cw case. Extensive data taken by O'Dean P. Judd completely supports
this statement.c For cw lasers, Eqn. [5] of section zero can be recast:

-_D2- _ 4Is _¢it, z_ 2

from which we have P= (---_--) Ib_ ST\Db / [6]

which is the analog of Eqn. [4] for the required cw output (optical) laser power level on the
ground.

Reilly has shown that CL = 1E5 (P/1000) °.81 [7]

Eqn. [1] already covers visible region mirror costs. Combining these results and varying Db,

as we did for repetitively pulsed lasers above gives the surprising result shown in Figure 5.

In fact, a cw laser operating at 1.3_tm has minimum cost which is not unfavorable compared
to the minimum cost of repetitively-pulsed counterparts in the above sections!

It will be noticed that the corresponding power for 800km range is in the tens of MW level.

Our result is surprising to us because we had not imagined that a tens-of-MW laser could be

built for a reasonable cost, and dismissed this alternative out of hand, prior to having
Reilly's cost figures.

c O'Dean P. Judd, private communication 6/17/95.
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ORLON Laser Cost vs. Rep Rate

1E+9-

t.__

"_ 1E+8
a
LO
O3

CO
O
0

t__

U}

._1
1

1E+6 ...... _,

1E-1

i i i i i i i , i

1E+O 1E+I 1E+2

Repetition Rate (Hz)

1 E+3

161



ORION Laser Cost Breakdown
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ORLON System Cost vs. Mirror Diameter
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ORION System Cost vs. Mirror Diameter
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cw laser ORION costs
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TOPIC 3: DOES A USEFUL SCALING GIVING LASER INTENSITY FOR

MAXIMUM MOMENTUM COUPLING IMA x IN VACUUM EXIST?

Such a relationship, if it exists• should describe• within a factor of 2 or 3, the
relationship between laser fluence incident on the target (J/cm 2) and pulse
duraton for a wide variety of possible debris surface characteristics and laser

wavelengths• at the point where maximum imLpulse is generated. It would be
surprising if such a universal relationship courd be more accurate than a
factor of 2 or 3• due to the variety of conditions under one hat. The relation-
snip is highly useful for back-of-the-envelope scaling exercises such as led to
the suggestion for a new candidate laser operating at 100 ps rather than 40 ns,
which came up at the Washington kickoff meeting. Greater accuracy is not

required (see Figure 1) since tl_e typical curve for'coupling vs. intensity (or
fluence) changes fairly slowly near the peak. I want to reiterate that this graph
givespeak coupling intensity, not plasma formation threshold, which wYe _
nave been using a little too Interchangeably.

Up to now, we have been using (I)ma x = 8E4_/'c for the relationship, based on a
quick study of a few experiments several years ago.

Now• after reviewing the data from 48 experiments spanning laser pulse
durations from 300 fs (3E-13) to 1.5 ms (1.5E-3) from the UV to the IR, the
answer is: yes it does exist.

Where • = c z a

Material c
(Expts)

All (48) 2.30 E4 0.446

Metals (30) 8.01 E5 0.648

Nonmetals (15) 5.97 E3 0.408

we have found:

rms log deviation from
trend is a factor of:

3.2

2.4

1.8
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The index following the graph gives references for the work. For the metals

graph, the 300 fs data point was deleted,as not clearly relevant to our work, as
were the Afanasev Cu and Pb points (b & d).

A word about scatter: The variation of coupling among materials in a carefully
done experiment (take• e._, points p,q,r,s,t,u w_ich represent 694 nm on B , C.
A1 . v. _, _ e. .

• Zn, Ag and W) IS often less than the variation among experimenters with
the same materials (compare, e,g, points W,f,o,V,H,n which are all 351 nm
on Al).

To qualify as relevant data, a curve like Figure 2 of §2 showing a clear

maximum must have been generated, for a target in vacuum. Unfortunately,
this requirement eliminates a lot of Cm vs. I data in the literature reported as
single points or a trend, or where the target was in air. Coupling in air is
usually. / q.uite, different from vacuum, counlin¢__o" I am currentl includin" one
air point m Figure 1 at 300 fs, smce plasma expansion durinlzYuch ave g ._hcwt

pu.l_e (at the sound speed) should be about 1000 times less t_an the mean free"
pare ot an air molecule. A table which elaborates this index" is included.

Note that the intensity for maximum coupling is a factor of two or so above

threshold for momentum production. It IS also slightly above the intensity
threshold for plasma ignition. The onset of plasma formation marks the onset

of reduced efficiency of surface heating by the laser. This is due to two plasma-



related effects whose relative importance varies with wavelength and t_ulse
duration: 1) surface shielding, in which the plasma becomes opaque tolaser

radiation, preventing it from reaching the surface and 2) reradiation, electron
thermal conduction and energetic charged particle production which convert
the absorbed laser energy to forms which do not reach the surface. The
situation is complex, since plasma reradiation and thermal conduction also

carry enerzy to the surface even when laser ener_,'v does not arrive there, but it
is clear tha't more energy would arrive at the surface without the plasma.

In vacuum, plasma ignition intensity is closely related to the intensity for
maximum c_uplin_, tending to lie albout a factor of two below it and following
a similar trend_ wit_ laser pulse duration and wavelength [see Figure 2, section

2] for the typical relationship between Imax and the threshold intensity for

momentum production].

The 4th figure in this section shows the calculated plasma ignition threshold
for aluminum with excimer laser pulses in vacuum after Rosen, et al. 1982.

This figure is evidence that, for a particular material and set of laser
parameters in our range of interest, Imaxq'C = constant is not a bad

approximation.

There is a good physical reason to expect such behavior. To achieve a certain

temperature (say that for vaporization and plasma formation) at x = 0 on the
front surface of a single material, or on various other materials with the same

product pCK, using various combinations of I and z, requires that Iqz be
constant.

This can be seen from the well-known equation for the prompt temperature
response of a semi-infinite solid with thermal diffusivity _c to a heat pulse

I'_/_o [see Carslaw and J/iger 1959 or Zeldovich and Raizer 1963]:

2 1 ,f_- exp(- X2

{limlx<<2,,/- _- T(x, '_)} - Jo9 C _ __-_)
[1]

In E n. 1), x is the dimension perpendicular to the solid surface, "¢ is laser

[pulseq_id(tl ;t, Jo = 4.185 J/cal, p is the material's density (g/cm3), _: = K/(pC)is its
thermal diffusivity, K is its thermal conductivity and C is its specific heat

(cal gqKq)].

Finally, to avoid confusion, please be aware that the relationship for laser
fluence • = Iz

is equivalent to I ,_(1-_) = c.

French Data: I finally got a response from the French on my request for the

actual Cm values in their data with aluminum, particularly in the 100-ps

range. Their published data I had arbitrary units for the coupling coefficients.

1 Cornbis, David & Nierat, Revue Scientifique et Technique de la Defense, CEL-Valenton

report no. 4 (1992)
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It apparently took them 3 months to get approval. My interpretations of their

data are summarized in the following table:

Table: Cmopt and lopt for 1.06-_tm pulses on 2024 aluminum 2

Pulsewidth _C_n-_pt(dyne-s/J) i Iopt(W / cm 2)

160 ps 5.5 5.0E9

900 ps 7.0 1.3E9

4 ns 7.5 3.0E8

30 ns 6.5 6.9E7

Please see the attached, for examples of the actual 160-ps and 30-ns data sets.

The final figure shows all the French data plotted vs. the fit parameter (IKqx),
illustrating:

a) A comparison model calculated from first principles with no adjustable

parameters can fit coupling data covering, in this case, a factor of 200 in

pulsewidth, within a factor of 1.8 near peak coupling

b) The scatter between two different methods of taking the same data spans a

(vertical) factor of 1.5., even with the most careful experimentalists in the
French CEA.

References. section 1

Rosen, D. I., Mitteldorf, J., Kothandaraman, G., Pirri, A. N. and Pugh, E. R.
1982 J. Appl. Phys. 53, 3190-3200

Zeldovitch, Ya. B. and Raizer, Yu. P. 1963Physics of Shockwaves and High-
temperature Hydrodynamic Phenomena Moscow

Carslaw, H. S. and J/iger, J. C. 1959 Conduction of Heat in Solids, 2nd ed.
Clarendon, Oxford
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TOPIC 4: NONLINEAR RESPONSE OF AIR AT 100 ps_

NOTE: this section supersedes the previous handout on nonlinear index. Please
discard your copy of the old section 5.

As pointed out in the kickoff meeting, an attractive short-pulse option (x =100 ps)
exists for the ORION laser which offers some advantages.

The preliminary analysis presented there indicated that this pulsewidth will allow

us to use a smaller mirror as well as a smaller laser while still igniting a plasma

and coupling well to the debris target and - because the Raman intensity threshold

goes up for short pulses - still avoid stimulated Raman scattering in the
atmosphere.

However, nonlinear refraction in the atmosphere may replace SRS as a concern for

this laser. This note considers that possibility.

As illustrated in the inset figure, n2 causes an instantaneous increase in the

refractive index of the medium through which the pulsed laser beam passes which
is proportional to the local intensity. Of course, we could take pains to make the

beam intensity I(r) uniform in the near field (where a is the beam radius, the "near
field" is defined as propagation distance z such that z< a2/(_., about 6000 kin). In

:......................................................................................................this case n2 would only add some additional

Laser
Beam

nonlinear
medium

(e.g., air)

i!i i

Laser
Beam

\

/
i ..................... ° ............................................................................... •

frequency components to the beam due to the

rapid change of phase during the rising and
falling part of the pulse. However, this is

normally an inefficient way of apodizing a
beam, diffracting away energy which could

have reached the target. Usually, we want a

rounded beam shape, like the gaussian shown
for illustrative purposes, which then causes
the medium (air) to look like a lens.

The nonlinear index n2 in 1 atmosphre of air at

standard temperature has been measured at

1.053pro [see Pennington, Henesian and
Hellwarth 1988], and is

n2 = (1.0_+ 0.1) E-16 esu [1]
= 4.19 E-10 cm2/GW.

If, as in the kickoff meeting notes, we use a

laser energy W = 1.2 kJ in a Db = 500 cm beam

with pulse duration x = 100 ps, then the near

field beam intensity is Ib = 60 MW/cm 2. This

intensity would give 1 radian of phase shift in a
distance

z = (kn2Io) -1 = 6.33 km_[t m [2]

which, even at l_tm wavelength, is similar to

the effective total thickness of the atmosphere.
Previously, we used the fact that the rotational

relaxation time T in atmospheric pressure air is
about 100 ps [Pennington, et al. 1988] and theory for incorporating relaxation times

which are similar to or longer than the laser pulsewidth [Marburger 1975] to

conclude that the phenomena responsible for n2 would not be able to follow a 100-ps
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Nevertheless, it is now clear that this analysis was incorrect. A recent paper [Shaw, et

al. 1990] clearly shows very little relaxation in measurements of phase shift in the

atmosphere made with a x=10ps KrF laser (248 nm). Shaw, et al. estimate the

relevant relaxation times to be of order 1 or 2 ps rather than 100 ps.

Of course, in assessing relaxation processes, there are normally two separate time
constants which are relevant. One is T2, the dephasing time. This is related to the

Raman linewidth Av (Hz, not radian frequency) by

T2 = (_Av2)-I [3]

The Raman linewidth in nitrogen, the main constituent of air, is pressure broadened

for altitudes below about 40km in the atmosphere (pressures larger than about 2

torr), above which Doppler broadening is dominant [Kurnit, Ackerhalt and Watkins

1987]. In the pressure broadened regime,

Av2 = pB [4]

and B for room temperature N2 is 3270 Mhz/amagat [Herring, Dyer and Bischel

1986] for the dominant rotational Raman lines, hence the T2 = 100 ps estimate.

The other important relaxation time is Ti, the so-called longitudinal relaxation time,

which is the time constant for the population difference between two states to decay.

Shaw, et al. use the frequency difference between the rovibrational bands in nitrogen

and oxygen
Avi = 2.36 b_ [51

to estimate what is effectively T1 = 1 - 2 ps for air.

There is even a third time constant which is much faster than these two, that for
relaxation of electronic effects in air, that is, the nonlinear susceptibility which would

still be present if the molecules were not free to rotate, but these are only 8% of the
total nonlinear susceptibility [Pennington, Henesian and Hellwarth 1989].

Using the results of the previous section 5 analysis without dwelling on them, the

picture that emerges for n2 in vertical propagation through the atmosphere, as

pulsewidth x drops from a few ns to a few fs, is:

1. Relaxation of that part of n2 due to T2 after the fashion shown in the following

Figure:
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as pulsewidth shortens past about I ns. Some fraction f of the original n2 will remain.

2. Relaxation of that part of n 2 due to T1 after the same fashion, as pulsewidth
shortens past about lps, leaving about 8% of the long pulse value.

3. Disappearance of n2 as _ becomes short compared to lfs.

The latter two cases do not concern us. The question is, how much of the n2 on the

vertical atmospheric path is due to T2, and how much to TI? Despite lots of

conversations and literature search in the last week, this question does not have a
simple answer, and the complicated analysis required has never been done
[Hellwarth 1995].

What is required is to use Kramers-Kronig techniques to assess the relative

contribution of the high frequency vibrational spectrum in nitrogen around 2330
cm -1 and that of the rotational spectrum around 80 - 100 cm -1 to its nonlinear
index, following a prescription outlined in Hellwarth 1975.

Especially since the recent measurements of Shaw, et al. demonstrate that the

fraction f is about 0.5, and because of the amount of work involved, it is my
judgment that this task should not be completed now, but assigned to the follow-on
R&D program.
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In what follows, we will assume the fraction of n2 which decays with the long time

constant T2 is exactly 0.5.

To show how this relaxation is done, follow the analysis of Marburger 1975], using a

parabolic pulse shape with full width at half maximum (FWHM) _, and parameter Xo

= _]2x = the halfwidth of this pulse at the baseline:

t 2

I(t) = I b (1 - _o2 ) for t<= %. [6]

The laser-induced refractive index change is given by:

5n = n 2 {I(t)+ 2T--_2Ib[(_ - l)+ (___o+ l)c - (_°+t,fr] }
%o2

for t<=Xo

and

Xo Xo 1)] for t> %. [7b]fin = n 2 Ib2_ e-¢r[ ex°fr (-_-- 1) + e-x°fr (-_- +
$o

As in the above figure, there is a maximum value of 5n in time, which is what we

consider to be the nonlinear refractive index. Then, we numerically integrate Eqns.

7a and 7b, using the actual atmospheric pressure profile [Wolfe and Zyssis, 1978]

broken into 20 layers for 11 different laser pulse durations ranging from 7ps to

50ns.

Hellwarth, et al. 1990 give a recipe for scaling this n2 calculation to wavelengths
other than the one for which n2 was measured. The numerical results of their

calculation are the basis for the following table, scaled to 1.06_tm = 1.0. The column

for Io threshold scaling reflects the fact that phase shift A¢ = kn2Ioz, where k = 2rdk.

353 nm

530 nm

1.053 }Ira

11 um (long _. limit)

Scaled n2

1.68

1.05

1.0

0.96

Scaled Io threshold

0.2

0.475

1.0

10.9

The calculated results for the n2 limit are shown in the two new "Maneuvering

Room" figures attached. The curves begin flattening out again at the left of the

Figures because of the assumption that 50% of the nonlinear index does not relax
with T2 but rather with T1. These figures also include the new SRS results whose

derivation will be described in section 9.

The new n2 curves portray the near field laser intensity required to just give one
radian net phase shift (_/ 6 wavefront distortion) between the center and edge of the

laser beam at peak phase shift, while propagating on a vertical path through the

atmosphere. The vertical path assumption is made for all calculations represented in

the Figures. Clearly, the limits are 40% lower for a 45 ° zenith angle, for those features
such as SRS, STRS and n2, which an undesirable result is proportional to the

product of intensity and path length. All the effects which are of concern to us share

this behavior. !87



This is a good time to ask the question: how much phase error is acceptable? For a

simple gaussian near-field radial intensity distribution in the laser beam, the Strehl

ratio (ratio of on-axis intensity to that for perfect propagation) is [Phipps, et al. 1979]

fg2(0)l 2= _ [C 2 (A(_) + S 2 (A(_)] [8]

where C2 and $2 are Fresnel integrals. This expression was used to generate the

Strehl ratio in the Table. The index (2) in Eqn. [8] comes from setting p=2 in the
expression for a general hypergaussian beam radial intensity distribution:

I(r)
-_o = exp[-2arP] [9]

Exact expressions for Strehl for shapes with pc 2 that give better exit pupil filling are
also given in Phipps, et al. 1979.

We clearly would not want to accept as much as a 10% intensity loss on target due to

nonlinear refraction. One radian phase shift in a simple gaussian radial intensity
distribution, by Eqn. [8], just gives 9% loss in on axis Strehl. This is a worst case

limit in two senses: (a) For the shorter pulses, average phase shift during the pulse is

about half ot the peak value, and (b) hypergaussian profiles with better pupil filling,
say p = 6, give less loss of Strehl ratio.

The conclusion of this preliminary study is that nonlinear refraction should not be a

problem with the laser system parameters given here, for wavelengths _.> 530 nm

although the parameters chosen turn out to be right on a new boundary for 530 nm.

We also note some really obvious advantages of the infrared wavelength 11.1pro.
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TOPIC 5: INTENSITY LIMITS DUE TO STIMULATED RAMAN SCATTERING

The main reason Stimulated Raman scattering (SRS) is bad for ORION beam

propagation is that it can be shown to result in a cone-shaped beam with zero on-axis
intensity in our configuration [Kurnit, et al. 1987]. Henesian, et al. 1985 also did

experiments on SRS conversion over a 150-m air path in which they found that beam
quality deteriorates severely above Raman threshold. Otherwise, one might decide to
let the beam convert to a new wavelength and not worry about it.

The SRS interaction is one in which two electromagnetic waves EL and Es and a

nonlinear polarization wave Q are coupled by an optical phonon wave above

threshold in a Raman medium:

gL -- EL(Z,t) exp(ikLz-icoL t)

gs = ES (z,t) exp(iksz-icos t)

Q = Q(z,t) exp(ikphZ-iabh t)

[1]

Practically, SRS is a nonlinear optical effect which redshifts sufficiently intense

radiation to a new "Stokes" wavelength given by

COs= COL- _ [2a]

while ks = kL - ka [2b]

for the propagation vectors (whose magnitude is k=27tFk) provides the other of the two

required matching conditions. The Stokes shift (OR - 2_CVR depends on the Raman

medium. For air, vR is about 80cm -1.

Ordinary SRS is already a fairly complex matter. The present problem requires a

theory for Transient Stimulated Raman scattering, by definition, and that is even

more complex. But first, let's review the steady state results.

In steady state, SRS intensity gain for the Stokes frequency depends on laser

intensity IL, SRS gain gR and range z as:

Is(Z) exp(gRILZ) = exp(galL z) [3]
Is---_- = 1 + (COLIsdcosIL)exp(gRILZ)

in the normal circumstance where the Raman seed intensity has not yet become as

large as the laser intensity Iso exp(gRILZ) << IL [Fulghum, et al. 1984].

The SRS gain coefficient is given by [Wang 1975]

(_ot] 2 8n3N COs [4]

gR = _,_qj C2 tORT

in the atmosphere (n=l).

Note that gain is scaled between wavelengths via its proportionality to ms.

In Eqn. [4], 3' is the Raman linewidth,

1

[5]
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the offset from the two-photon resonance, N is the molecular density and (Sa/Sq) the

derivative of the molecular polarizability with respect to the normal coordinate q of
displacement in a Raman-active vibrational mode.

For transient SRS, the situation is more complex. We follow the analysis of Ori, et al.
1990, with some help from Carman, et al. 1970.

In the transient regime, Eqn.s [1] become coupled field equations with coupling
coefficients Tll andq2:

c3Q* .

+ (T- iS)Q* = iT11ELEs [6]

°_Es 1 8Es

8-_-+ = - iT12Q'ELc Ot

In Eqns. [6], 5 the offset from the two-photon resonance.

In the large amplification limit, transient SRS gain gt can be related to the steady
state value given by [Heeman and Godfried 1995]:

gt z - 44gsZ Tx L [7]

Ori, et al. solve Eqns. [6] numerically. We have adopted their solutions, and modified

them for integration through the real atmosphere rather than the exponential

density profile they assume to give the SRS limit curves in the "Maneuvering Room"
plots which were attached to section 5.

In particular, we utilized the most realistic of two threshold definitions they

introduce: namely that SRS pulse energy has become as large as 1% of the laser pulse

energy. Since threshold intensity is proportional to nepers of small signal gain

normally beginning around exp(--30) for Iso, a choice of 10% for the limiting value
would make a relatively small difference in the outccome of our calculations.

We allowed for real atmospheric profiles by separately integrating the steady state
SRS gain following a prescription of Kurnit, et al based on the variation of T2 with

altitude (see Figures 1 and 2 of 4 attached), in order to normalize the steady state
SRS gain calculated by Ori, et al. to these values, then letting their calculations

depart into the transient regime. The attached Figure makes it dear, for example,
that the first 6 km of altitude represents only a 10% effect on the overall gain
integral. Steady state SRS gain actually rises with altitude at first, because

temperature is going down, which results in a redistribution of the population with
the various rotational states in nitrogen that favors higher gain.

They assume a source function for the first photons which are amplified at _,s by the
transient SRS gain that depends on the laser beam volume, and we have also

modified their results to reflect the size of beam we intend to use in ORION.

Beam source size is a few percent effect, that can be scaled directly from beam sizes

Ori, et al. consider without significant error. (See the Figure 3 of 4 attached to this
section based on Ori, et al.)

The SRS threshold calculations of Ori, et al. covered numerous wavelengths from

300nm to l_m [See Figure 4 of 4 of three attached to this section]. Therefore the only
serious use of the Eqn. [4] scaling in our work was in generating the prediction for
ll.l_m.
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We conclude that
• SRS thresholds are very closefor 530nm laser wavelength and unavoidable for

shorter wavelength
• A tremendous advantage accrues from going to ll.l_m

• The 100-ps operating point we defined at the Washington kickoff meeting based on
the simple "elbow" curve for SRSthreshold variation that we had at that time is
indeed as good a choice as the 40-ns operating point for the laser.

This laser point design will be reviewed in more detail in section 12, but its main
feature was allowing us to go to about 1.5kJ pulse energy at lOOpsrather than 20kJ
at 40ns, which might result in a substantially cheaper laser.
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T2 = 1/(_5v) for nitrogen, including pressure and
doppler broadening effects, after Kurnit, et al. (1987)
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TOPIC 6: STRS LIMITS TO ORION MANEUVERING ROOM

We have now completed calculations which clearly define the limits posed by

Stimulated Thermal Rayleigh Scattering (STRS) in the atmosphere to

"maneuvering room" in pulsewidth and intensity for the ORION laser.

Our results show that there is more room in the direction of longer
pulsewidth and lower beam intensity than we earlier believed based on

simpler first-round calculations defining the STRS limits.

STRS is a fine-scale analog to whole beam thermal blooming, in which

ripples in the laser beam intensity grow by producing corresponding density

variations in the atmosphere which act like lenses, creating more intense

ripples downstream. When gain in the direction of laser propagation is

positive for these ripples, they ultimately become strong enough to form a

diffraction grating which scatters the laser beam and severely degrades its
intensity and optical quality.

The difference with whole beam blooming is in the scale of the effect, not in

the basic physics. In a plot of intensity or refractive index across the laser

beam, the spacial frequency of the STRS effect for gains of e 3° or so will range

from 30/cm to 30,000/cm [meaning ripples with wavelength from 0.2 mm to

0.2_tm] depending on laser wavelength and pulse duration in the ORION

application. In whole beam thermal blooming, in contrast, spacial frequency
is of the order of a reciprocal beam radius, say, 0.003/cm.

The improvement in the present calculation is similar in nature to that for

the improved calculations of SRS and n2 limits which we reported earlier. In

the present work, the atmosphere up to a height of 70 km was divided into 13

zones of various physical thickness ranging from 1.6 to 8.7 km, the thickness

of each zone chosen to correspond to an absorption length 1/o_ for the laser

wavelength. Our earlier estimates of the STRS limit used just one zone with

thickness equal to the atmospheric scale height. As in earlier work, the theory
of J. J. Barnard [1989] was employed to analyze STRS.

This is a fairly complex problem. Barnard defines 8 distinct regions, each with

completely different expressions for exponential gain G experienced by the

index perturbations. These regions describe different physical effects. In each

zone of the atmosphere, different regions play a dominant r61e, since so many

of the physical parameters that determine the theory change by several orders

of magnitude on the way to outer space, including refractive index (n-l), laser

absorption coefficient _, thermal diffusivity X, and the velocity v due to wind

shear and turbulence. In our simulations, we found that the laser beam often

experienced the effects of 3 of the Barnard regions on the way out of the

atmosphere and, of course, which ones were engaged depended a lot on laser

beam parameters. In general, the longer the wavelength, the higher the

intensity which can be propagated for a given pulsewidth, just as with SRS
and n2.
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Figure 1, plotted from theory for the indicated choice of parameters, and
constant distortion number ND, defined below, illustrates the complexity

involved, and the specific physical effects encountered.

For clarity, we have added some nomenclature not present in Barnard's

paper, plus more precise definitions of the boundaries separating the gain

regions.

Notation is summarized in the inset of the Figure, but we will amplify a few

definitions here at a level which will not fit the inset.

It is convenient to use dimensionless perturbation wavenumber _c= k±/_ and

laser pulsewidth T= _Cs'¢, where _ = q(2k/z), z is the range (thickness of a

particular atmospheric zone 1/o_ in our case) and k = 2_/_. is the laser wave-
number. These are the axes in the Figure, but corresponding "realworld"

values are also shown on the opposing axes. The "distortion number" ND is

given by

ND = Flbkz'_

where F = (_1) (n-1)(x

Y P

and y indicates the specific heat ratio. ND is directly related to laser beam

fluence (I) b = Ib'¢ and, numerically,

ND = 2.826 (I)b(n-1)kz(o_po/P) [11

when (I)b is expressed in J/cm 2 and 0_, k and z remain in cm units.

Atmospheric pressure is po at sea level, so _o(X/p is proportional to the heat

per molecule absorbed from the laser beam.

G is the exponential gain in nepers, so that ripples at the end of a zone of

thickness z have experienced a gain eG [not e_'Z]. This is an important

distinction because the dimensionless quantities _c, ND and 'Fin the following

expressions implicitly contain the z-dependence in the gain expressions. For

example, in Eqn. [2], G = ND 1/5 n 4/5 _75 implicitly contains z 2/5.

With this preamble, the physics regions are summarized as follows:

Ri_Ke_gi_O___!:growth due primarily to acoustics, where diffraction is unimportant

G1 = 1.82Nl/51c4/5q2/5 [2]

ND 1/3
Boundaries are '_1= 0.398 (---_--) and _c1 = 0.678 N1/6_/3

Region 2: growth in the acoustic regime but with sufficiently large

wavenumbers K that diffraction cannot be ignored. This is typically the

regime occupied by the laser beam at sea level.
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G 2 = 1.62N_/4K:l/2'/a/2 [3]

N1/2

Boundaries are _1, _ = 0.758 (--_--) and '/_ = 0.604 N1/6_c 1/3

_: longer pulse times where growth is isobaric (constant pressure)

rather than acoustic, and diffraction is not important.

G 5 = 1.26N1/31c2/3 [4]

Boundaries are qi, % and K 2 = 1.189 N 1/4

Region 9: isobaric growth where diffraction is important. This is another

typical region, particularly for _ts- rather than ns-duration laser pulses.

Here, G3 = 1.41N_)/2 [5]

Boundaries are q'2, _c2, Tcritl = (Cs _D)Kv and Tcrit6 = 1.41 ( _D_c2X)

_: sufficiently long pulse times that wind shear becomes important in

helping to wash out the index perturbations, this is important at higher
elevations in our problem. Where dv/dz = v/z,

(NDCs_C_ 1/2
G A=1.41\ _-_ ! [6]

,,NDCs\l/3r ( q" )]2/3
and the boundaries for this region are _c3= t_) [l+ln _ J ,

N_)/3

_rit2 = 1.259 c s (-_v) and C_crit3 = (! _)2/9N1/3Cs
' (2/t)8/9 v K 1/9

_: region A with large enough ,: that diffraction is important:

NDCs [l+ln(_'/" )] [7]
GB- _ '/critl a

-_ _(l_)l/6xl/2CS)[l+ln(_ntl) ]with boundaries lc3, _rit 1, _rit4 k _-_v--_- _

'Tcrit5 = Xv x ,3 ](ND Cs _ 1/211+1n (Tc_Tt 1)]1/21.

1/2

and
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Here, ! is the scale of the largest atmospheric eddies, which are taken equal to

the atmospheric density scale height.

Finally, we have two regions in which negative gain is experienced because

pulse times are long enough for either molecular diffusion (region 4) or
turbulent diffusion (region C) to wash out the refractive index gratings faster

than they are created.

G4 = _ xK2T [8]

and Gc --__ yK2/3T [9]

with boundaries given by Tcrit 3, Tcrit 4, Tcrit 5 and Tcrit 6, with a vertical

2_ CV_ 3/4
boundary K4 -- separating the two regions from each other.

These expressions [as well as the boundary intersections] were incorporated

into a computer simulation which determines, for each of the 13 atmospheric

zones and a particular selection of k± and "c, which region of the propagation

physics to apply.

Even with fixed laser parameters, ND and _ change with each zone so the

Figure 1 plot appears to shift horizontally and vertically from zone to zone for

a particular pair (_:, q). Figure 2 shows how the same plot looks at height
h = 69km, while Figure 3 shows a calculation for the same height but _, =11.1

].tm.

In order to obtain a single point in the new calculations, 20 -3 0 iterations

were necessary to find that combination of beam intensity Ib and ripple

wavenumber k± which, for a chosen wavelength k and pulse duration x, gave

Y_i Gi = 30, as well as an absolute maximum versus variations of k±. This was

done for 5 - 6 values of x for each of 3 wavelengths we are still considering, for

each our two customary site altitudes of 0 and 6 km.

Figure 4 shows how net gain varies during a typical iteration sequence.

Changes in gain are due to propagation in individual zones moving from

one region to another in the propagation physics. Some of the zones

encountered during the simulation are indicated.

Figures 5 and 6 show the results for vertical propagation from our customary
site altitudes of 0 and 6 km, respectively. The limits posed by STRS are no

longer straight lines with slope 3 on the chart, a feature of Barnard region 2,

where constant gain G implies Ib'¢ 3 = constant, as in whole-beam thermal

blooming. Previously, we took the atmosphere to be one zone with laser site

level pressure and absorption coefficient appropriate to the wavelength.

Thickness of the single zone was one atmospheric scale height. In the present

simulation, tabulations of the actual laser absorption coefficient vs. altitude

[Wolf and Zissis, 1978] were used to create 13 zones between sea level and 70
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km altitude, each with thickness 1/0_. Due to the variation of o_, physical
thickness of the zones varied from 1.6 km to 8.7 km.

The main lesson to take home is that we now have more maneuvering room for

the ORION laser at long pulse durations and low peak intensity.

On each plot is also drawn two "target effects" lines. These are given by Eqn. [8]

from §0, and represent the constraints of achieving optimum coupling on target
as laser pulsewidth varies from 100ps to l_ts for two different mirror diameters.
These diameters are:

(1) The smallest feasible mirror which will avoid SRS. This mirror is 6m in

diameter for 532 nm or [27 m] in diameter for 11.l_tm, the two extremes of

wavelength we are still considering.

(2) A mirror which is twice as large in diameter as (1).

Note that the larger mirror allows 4 times lower pulse energy W and 16 times

lower peak intensity Ib in the near field of the laser beam. [see Eqn. 9, §0]

The reasons for this are straightforward: on the lower target effects line, a mirror

of 4 times larger area Ab is capable of imaging the laser beam onto a target spot

with 4 times smaller area As, giving a factor of 16 intensification in the ratio I$/I b.

At the same time, 4 times larger Ab with 16 times smaller Ib gives just 4 times

smaller pulse energy W. The slope of the line is - 0.55, as required by the analysis
of §0 and §1.

Finally, Figure 7 shows in more detail the variation of laser pulse energy W
along the target effects lines corresponding to the choices Db = 6m and Db = 12m

for all 3 laser wavelengths [532 nm, 1.06 _tm and 11.1 _m] we are considering. It
can be seen from the Figure that, with these realistically-sized mirrors, the

11.1_m wavelength automatically requires MJ to 100's of MJ of pulse energy, for

all but the very shortest pulses, and these pulses are difficult to do with CO2 laser
technology.

Summary. of our findings in this section:

• We have more maneuvering room than previously thought, for long pulses
and low peak intensities

• CO2 laser technology requires huge pulse energy when coupled with mirrors of
realistic size.

• A green (532 nm) laser beam at 100 ps pulse duration with a 12-m-diameter

beam director can couple effectively to targets at 1500 km range with only 340

joules of pulse energy. A 60-Hz pulse repetition rate would be required to give
20kW average power, which is required to clear 1 - 10-cm debris in a
reasonable time.

Reference_:

Barnard, J. J. 1989 Appl. Opt. 28 pp. 437-445

Wolfe, W. L. and Zissis, G. J. 1978 The Infrared Handbook Office of Naval
Research, Washington, D.C.
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TOPIC 7: GRAPHICAL METHOD FOR PICKING YOUR WAY THROUGH THE ORION

PROPAGATION CHART

In previous sections (see §5 and 6), we developed the ORION "Maneuvering Room
Chart", in which the limits set by such effects as Stimulated Raman Scattering (SRS),

Stimulated Thermal Rayleigh Scattering (STRS), nonlinear atmospheric index (n2),

optical breakdown and whole beam thermal blooming were portrayed.

Those plots were presented as laser intensity in the atmosphere (Ib) vs. laser pulsewidth

_, following a suggestion by Reilly. This is, of course, nearfield intensity, because the

farfield is typically I - 5,000 km distant for our problem.

On these plots, we showed a dashed line labeled "Target effects" which shows what

intensity is required in the nearfield to produce optimum target coupling in the farfield

(based on experimental data) for the situation we were discussing. The situation
involved some combination of laser wavelength _., range z, nearfield beam diameter Db,

etc. The connection between these parameters and the Target effects line was the

relationship developed in §0:

C(aN) 2 [_b2b ]2 Ca2 [_] 2 [1]Ib'_l-'a - -T - S T

where S is Strehl ratio, T is atmospheric transmission, a = 4/7t, c_ = 0.45 and C = 2.3x104 •

It was shown elsewhere that Eqn. [1] guarantees target ignition and optimum

momentum generation on the target, more or less independent of target material and

wavelength in the situations we are considering. As shown in Figure 1, c_ is an

empirical constant derived from the laser coupling literature. It makes sense physically,
since (z=0.5 is the value one obtains as the solution of the problem of heating the surface

of a semi-infinite slab to a fixed threshold temperature. Figure 1 also reminds what we

mean by "optimum coupling intensity" or fluence.

It is desirable to make a universal plot which permits the whole situation to be assessed

graphically independent of special assumptions. To do this, we note that SRS and n2,
and to some extent STRS, scale inversely with wavelength, and also that fluence _b = Ib'C

is probably of more direct interest than Ib, since the required laser pulse energy

W = _b*(_Db2/4) is directly related to hardware size and cost.

For these reasons, we plot _b/_, vs. _, modifying Eqn. [1] to read:

Or, _ C _2 ,, [1A]
--gT

where __ z _f_ [2]

nD2/4

Figure 2 is a plot of the function in Eqn. [2], and a related function _ we will use in

discussing cw laser effects later in this article.
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Please refer to Figure 3 attached. Although the format may seem unfamiliar, the same

data we published earlier is present, now plotted as fluence rather than intensity vs.
pulsewidth.

Note the advantages: for n2, SRS, whole beam thermal blooming and, to some extent,

STRS, the boundaries set by these effects lie on top of one another for _, = 0.53, 1.06 and

11.1 _tm. For the first time, we have come up with a universal plot for computing
ORION propagation that is also easy to use.

Here's how to use the attached plot_.

In the first place, note that wavelength is normalized to 1.0 _m, Db to 1.0 m, and range

to 1000 km (1.0 Mm) in the plots. Furthermore, we still have 3 assumptions:

• Strehl ratio S = 0.5

• Atmospheric transmission T = 0.85

• Laser repetition rate f = 100 Hz (not important until step C below)

1. Going from problem parameters to optical system parameters:

A. Determine 9- Figure 1 allows you to do this in the normalized units, for easy transfer
to the universal ORION propagation chart, Figure 3.

Please note that Eqn. [1A] works out correctly in cm and W/cm 2, but that I have done

the numerical conversions involved in the normalized units for you in going between
the charts (The parameter _ in the charts is the real _ + 100).

B. In Figure 3, interpolate between the _ lines until you find yours. This line gives you
required laser fluence vs. pulse duration.

C. In Figure 4, since you have picked a mirror (beam) diameter Db, and you now know
fluence, find pulse energy and laser cost.

2. Going from optical system parameters to problem parameters:

A. From Figure 4, pick a Db and a laser pulse energy, defining _b-

B. In Figure 3, enter your laser pulse duration and determine _. Figure 5 gives the same

results for a high altitude site: Figure 5 shows, for 6km, a very slight improvement in

the SRS limit, a slightly greater increase in the n2 limit, and a substantial increase for
STRS.

C. In Figure 2, find what range you can access with that mirror diameter and
wavelength choice.

In the example shown as Illustration 2, a 1.06 _m laser with 100ps pulsewidth and 100 J

pulse energy is considered. For the illustration, a 3.5-m mirror diameter is chosen, like

that at the USAF Starfire Optical Range. From Figure 3, we find _b = 0.001 J/cm 2, and

that a 100-Hz laser with this capability should cost about $10M. From Figure 2, we find

_=0.03. From Figure 2, this corresponds to a range of 230km, an altitude easily attained

by the Shuttle, and sufficiently high that the Shuttle orbit decay time is many years.

Lifetime at 230 km for 10-cm, 1-kg, spherical targets that could be deployed by the
Shuttle would be about 180 days.
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Cw La_er Chart

In closing, it seems reasonable to see if we can develop a cw laser analog to Figure 4. The

only purpose of such a plot is to facilitate range calculations. None of the effects shown

in Figures 3 and 5 limit propagation except whole beam thermal blooming, and these

charts are not appropriate for assessing that effect with cw lasers.

With the parameter

z_
= [2A]

7rD 2/4

the cw version of Eqn. [1] is:

p = 7rD2 Is 42 [1B]
4 ST

In Eqn. [1B], Is = lkW/c m2 is the fixed intensity on target which data by O'Dean P. Judd

and calculations by J. P. Reilly show is appropriate for optimum cw target coupling.

As in the pulsed case, the parameter _ can be looked up. The only difference between

and _ is an additional qK on the vertical axis of the lookup chart, Figure 2.

Figure 6 shows the resulting cw laser power and laser cost, given by J. P. Reilly's cost

algorithm.

Elsewhere, we have shown that optimizing system cost gives a nearfield beam diameter

Db for the (1.3-_m) cw iodine laser case which varies from about 4.5 m at 400 km range

[4= 0.03] to about 7.5 m at 1500 km range [4 = 0.044]. Bear these figures in mind when

reviewing Figure 6. They are totally consistent with power levels and costs given in the

final Figure of §0A (rev 1) which was distributed during the Holidays.
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TOPIC 8: THE PRODUCT TA/M IN ORBIT t DEPENDING ON ORBITAL ELEMENTS

David Spencer provided the following table of the product T A/m of orbital lifetime and

area/mass ratio as it depends on orbital elements from his "Lifetime" code.

C. Phipps also calculated the 0v 2 pressure expected on a circular orbit from the mean

density represented by the CIRA 1972 Standard Atmosphere [COSPAR, 1972]. Agreement
with the mean values for circular orbits provided is good. The main sources of

departure from the mean lifetime are solar rain/max effects on the atmospheric density.

Changes in ellipticity up to 0.05 (the largest we consider) are a relatively smaller effect.

Figure 1 provides hp vs. TA/m, which is one of the main pieces of the nomograph

puzzle required for assessing laser requirements in the ORION project, others being:

• Ava vs hpo (see attached figure)

• Incident laser fluence (1)in c VS _iVai ("momentum coupling coefficient" section) and

• _inc vs on-the-ground laser parameters, from considerations being generated by other

members of the ORION team, as well as limits posed by Stimulated Raman scattering
and nonlinear index in the atmosphere (_4).

We have also attached a figure showing how the atmospheric scale height varies with
altitude.

CIRA 1972 [Committee for the COSPAR International Reference Atmosphere, Working
Group 4] Akademie Verlag, Berlin

Allen, C. W. 1973, Astrophysical Quantities, 3rd edition, Athlone Press, London
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LIFETIME TABLE BASED ON D. SPENCER

8/ 23 NUMERICAL INTEGRATION*

ha(km)

1000

1000

1000

1000

1000

1000

1000

1000

1000

hp(km)

200

200

m(g)

0.1

200 10

200 100

300 1

400 1

500 1

600

700

1000 800

1000 900

1000 1

200 1

300 1

400 1

500 1

600

70O

1000

800

800

8O0

800

800

80O

800 80O

600 200

600 300

600 400

500 1

600 1

200 1

300 1

400

200

300 1

200

600

600

400

400

400

300

300

200 1

T, days

0.72

6.83

71.9

492

79.1

275

528

875

1550

5310

12400

20570 20570

4.52 4.52

52.5

188

390

638

902

1280

2.6

25.6

101

242

361

1.09

7.8

28.1

0.53

2.9

0.16

T A/m (cm2-day/g)

from 1/1/99

7.2

6.8

7.2

4.9 **

79.1

275

528

875

1550

5310

12400

52.5

188

390

638

902

1280

2.6

25.6

101

242

361

1.09

7.8

28.1

0.53

2.9

0.16

*: A = lcm 2 for all objects

**: Nonlinearity due to changing solar cycle
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How much difference does it make if the impulse is applied incre-

mentally instead of in one impulse? At perigee instead of apogee?

In §8, we computed the Av required to lower the perigee of objects in elliptical orbits,

assuming the velocity change is applied in a single impulse at apogee•

Where total energy H = V + E

Potential energy

[1]

GMm
V - [2]

r

Kinetic energy E = m v2/2 [3]

r a - rpand since e ---

ra+rp
[4]

Then H= GMm [5]
2a

is related directly to the semimajor axis

and [1],[3] & [5],[6] give v2_ GM(1-e)

a = (ra+rp)/2 = ra/(l+e) [6]

2GMrp [7]

ra ra(ra+r p)

• d(v 2) (2GM_((ra+rp)-rp.Differentiating [7] gives =

drp "--_a "" _£ ) =

2GM

(ra+rp) _

[8]

But of course d(v 2)

drp

and equating [8] and [9] gives

2

_ 2pa dpa _ 2Va dpa [9]

drp m 2 drp m drp

dpa m GM m G_-_a

drp v a (ra+rp) 2 2_-p(ra+rp)3/2 • [10]

The point of this whole exercise is to integrate [10] in order to determine how much

total momentum, applied in a series of increments, is required to obtain a final

perigee value rpfina I , starting with initial orbital parameters rao and rpo. This is doneas follows:
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7:34 PM

N/GMrao f rptinal drpPai = m 2 [(rp)l/2(ra+rp) 3/2 ]
i=1 arpo

[111

The integral tables give

_/2GM _p rPa"a-[--1
i = 1 rao _/(rao+rp ) rpo

[lla]

as stated in the "orbital mechanics" viewgraph.

This is of course the best possible situation: that velocity increments can always be

applied at apogee. Nevertheless, since we have discussed the fact that it is desirable
to build a laser large enough to bring down many of the small objects in just one

overhead apparition, this is a useful case to study. Note also that, to compensate for

the favorable assumption, we have ignored the effects of drag during the laser

application sequence.

Now, let's see how bad the worst case (Av applied at perigee) really is.

Eqn. [lla] is symmetric with regard to exchange of subscripts. For application of Av

at perigee, the relevant expression is:

N/2GM rp_or_ r_,_lVP i= [ 1 [12]
i = 1 rP ° _f( ra) %

Figure i following is a plot of AV a required if applied as a single impulse.

Figure 2 attached is a plot ofEqns. [lla] and [12], and it is readily seen that

• There is not much difference between applying Av incrementally and as a single

impulse.

• It is much harder to drop the apogee by shooting the debris at perigee, than the

reverse, as we claimed in §7. As an example, consider these two cases:
1) The case hao = 1000 kin, impulses applied at apogee (red solid curve). Choosing

h_, = 500 km, we read Av = - 82 m/s off the graph.

2) T_e symmetrical case hpo = 500 km (green dashed line). Choosing hao = 1000

km, we read Av = - 218 rods offthe graph, 2.65 times greater Av this way.

• It is clear that real cases will fall somewhere between these extremes, if we have

no knowledge of the particle's orbit or no convenient access to its apogee.

• Av = -338 m/s will bring down everything below 1500 km, given hp = 200 km as a

definition of success.
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TOPIC 9: ACTIVE OPTICAL ACQUISITION AND TRACKING USING THE PUSHEP

LASER AS ILLUMINATOR IS A VALID OPTION

Executive Summary

We summarize the case for active

optical acquisition and tracking, that is,

using the pusher laser for acquiring
targets instead of just identifying and
ablating them after handoff from a

radar. With 30kW laser average power
and a 10-m diameter transmit/receive

mirror, high-albedo Lambertian targets
as small as 1.5cm can be acquired at
1500km range, while still searching the
whole sky in 2 years.

However, it is not necessary that the
receiving mirror have the same high
optical quality as the transmitting
mirror, which can be colocated with a
much larger, low-quality receiver. In the

examp.le we will describe, a 20-m
receiving mirror is able to acquire even
dark (R=0.3), 1.5-cm debris particles
(the smallest we need to find) at 1500
km and search the sky in 2 years. A
high-quality, 6-m diameter mirror is
adequate for the beam transmission

task, and close to optimum size. Many
targets will have narrow refected beam

profiles (such as sheet aluminum) and
will be spinning, so will be easy to
acquire when they point in the right di-
rection, but very difficult otherwise, for

acquisition and tracking technique.

What are the requirements?

1. We would like to acquire and track
debris targets with R >=0.3 and d>=l.5
cm at h < 1500km.

The distinction between altitude and

range is not too important since the
higher, smaller targets can be pushed on
radially to reduce their perigee, even
though that is less efficient, because
they are small.

2. We would like to scan the entire sky
in 2 years or less.

R
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DR

DT
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d
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W

P

c

ds

As

_"_s

I

Iopt

tm

q

Vz

fl

f2

RE

h

hc

Table I: Glossary

Definition

Target Bond albedo: reflectivity into 2n sterrac
(a hemisphere of space)

Target range. Always equal h in this analysis.

Receiver mirror diameter

Transmitter (beam director) mirror diameter

Target area (cm 2)

Target effective diameter (cm)

Strehl ratio

Atmospheric transmission

Laser pulse energy (J)

Laser average power (W)

Laser pulse duration (s)

Speed of light (crn/s)

Laser spot diameter at the target

Laser footprint area at target =/gds2/4

Laser footprint solid angle = nds2/4z 2

Peak intensity (W/cm 2) at some location

Peak intensity for optimum target momentum

generation per incident joule of laser light

Duration of ORION mission (s)

Number of targets in a specified altitude zone

Apparent target speed across the field of view

Repetition rate during 3-pulse (Hz) acquisition
burst

Laser pulse repetition rate (Hz)

Radius of Earth (6378 km)

Target altitude

constant = 1.988E-23

3. We would like to do these things

without investing in a high quality mirror larger than the ideal 6-m diameter transmitter.

4. We would like to do these things without investing in a laser with _ power much larger than
the ideal for pushing on the targets to clear near-Earth space - which is approximately 30kW.

2 2 2 Excel�once in photonics at affordable rates



How do we determine sky survey time and search spot size?

In acquisition mode, spot size at range ds is not a free parameter, but depends on tin, Db, W, q, v±, f, h

and other parameters including producing the minimum necessary_ number of detected photons from
the minimum interesting target, as well as covering the entire sky in an acceptable time, through

relationships set physics and by a search strategy.

S trategy: with uniformly distributed targets having uniform number density per sterradian, the best

strategy for detecting a fraction (1 - l/e) of them is a random search pattern which totally covers

every spot in 4rt sterradians of sidereal space in time tm, with a dwell time in each laser footprint f_s

just long enough to detect the target (if present) and make a track. The protocol used for searching
may be a picket fence or bowtie pattern as Reilly suggests in his recent memorandum, or a spiral or

other pattern.

Almost all the time, a search laser of reasonable pulse energy will be looking at empty space.

Figure 1: Probability of finding any 1-20-cm Debris Particle beneath the altitude h and with ds
illustrates this fact for various debris altitudes, with basis for the calculation shown in the inset box. It

is assumed that the only targets under 300km are 10 test targets deliberately placed there for the
ORION demo. It will be noted that, for the existing population, a search spot as large as 100km is

required to have a high probability of including any target larger than 1 cm. This is important,
because it says that, most of the time we will fire the laser, not get a return, and move on. This fact

makes it simple to compute ORION Sky

1E+7-

1E+6-

"10

¢0
1E+5.

ffl

"_ 1E+4

0

_ 1E+3

E
Z

Estimated LEO Statis,' cs

1E+2-

IE+1.
0.1 1 10 100 1000

Object diameter d (cm)

Figure 2

Survey Time (Figure 3), since dwell time
will be limited to the time it takes to

repoint the laser beam. Plotted is the

expression

4 (RE+h)

How do we know how many targets there

are? Figure 2: Estimated LEO
Statistics is an estimate based on infor-

mation provided by Drs. Don Kessler,
NASAJJSC and David Spencer, USAF/

Phillips, as well as other sources, which
shows that it is reasonable to assume

about 150,000 total objects in the critical
1.5 to 20-cm size range below 1500 km.

It is important to remember that, while
error bars are probably a factor of two on
these points, error is not accurately
known because the debris number in this

size range has only been sampled, in the

Haystack campaign. In addition, at any
time, another COSMOS event might
release 70,000 more objects into LEO or
a collision of large, "dead" objects might
occur. The number of targets at various
altitudes used in Table II and in Figure 1
is derived from this Figure by proportion-

ing this total to the reported flux at
various heights.
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Table II: Assumptions for Acquisition

Pusher laser wavelength 1.06 _tm

Minimum interesting target d = 1.5 cm

T 0.85

S 0.50

R 0.30

Target number density uniform over 4n (worst case)

Target v± direction random (worst case

assumption)

v± 7.7 E5 cm/s

q(800km<h< 1500km)

q(300km<h<800km)

q(h<300km)

tm

Array quantum efficiency

Detector quantum efficiency

150k objects

40k objects

10 objects (deliberately
inserted for demo)

6.32E7 s (2 years)

20% (J. P. Reilly)

65% (J. P. Reilly)

Figure 3: ORION Sky Survey Time (a correction of an earlier chart of the same name you have
received) connects search spot size, target altitude (here z rather than h) and laser rep rate f to the
time required to search the sky.

This Figure is used as follows: enter the Figure with an acceptable sky search time in years. Follow in
the direction of the dashed line to the line for the laser rep rate, then down to the range, then back

across to the required spot size. It will be seen that spot sizes of the order of 10km are necessary for
reasonable search times.

Figure 4: Photons received calculator, identical to the one you received earlier (except that S = 1
for floodlight beams), shows that, if you use spots that large, you will not receive enough photons for
detection except for big, bright, close targets.

This Figure is used as follows: start at the top left with spot size, turn downward at the line for t_get
range and obtain the chart output from the bottom left axis (photons per kJ). The parameter DbdqR is

the product of the mirror diameter Db _ assumed the same for transmitting and receiving) in

meters, target diameter in cm and the square root of its Bond albedo. For a 5-m mirror looking at an
R--0.3, 1.5-cm target, Dbd_/R -- 4 is the correct line to follow. Then, a 10-km spot size for a target at
1500 km would return only 0.004 photons per kJ, that is, a 2.5-MJ pulse at the ground would be
necessary to get a 10-photon return!

More realistically, if we use a 6-m mirror, W = 30kJ and 4-km spot size in the longer-term system
[for 2-year sky search time], then at R = 0.3, a debris target must be 4.5 cm in size to return 10
photons.

Calculations such as this have been discouraging in the past.

Now. imagine that we have two mirrors - closely colocated - a small one with high quality to
transmit and receive, and a much larger, very low quality mirror surrounding that to receive the
returned photons, to take the place of the radar system.

224

Excellence in photonics at affordable rates



Figure 5: Average Laser Power Required to Receive 10 photons per shot and Search Sky in 2

years shows the average power P = f2*W required to meet thes criteria simultaneously, vs. target
altitude. Two dashed horizontal lines show:

• The cutoff in detectable actively illuminated targets if we limit P to the 30kW required to bring in
all the debris below 1500 km in 2 years is DRd'_R = 15 m-cm. That is, a 20-m diameter collector

seeing a 1.5-cm particle with Bond albedo R = 0.25.

In other words, active laser acquisition will work with a 20-m, low quality collecting optic.

• The DRd_R cutoff if we were to use 3MW average power [a power level dictated by generation of

useful thrust at range with a CW laser] - and dwell long enough on each spot to generate the 10

photons - is 10 times smaller. However, for CW acquisition, we can see that more received photons
are required compared to the pulsed illumination case, since the target is moving and it is a streak that
we must create rather than just a dot on the focal plane array.

The spot size ds can be read off Figure 4, where it is seen that a search spot of order 4km is correct to

get back 10 photons from a 30-10 pulse. For the CW case, the target moves 77m per 10ms interval,
during which the 3MW laser will also deposit 30kJ. If a 1000xl000-pixel matrix is imaging a 4-km
spot at range, the target streak will be 20 pixels long, and 20 times as much illumination is required to
provide detection as in the pulsed laser case. The CW laser certainly meets this requirement with 100
times more photons. However, there are concerns with thermal blooming, beam quality and target
interaction. We will not analyze this case further in this memo.

Average power P is independent of search spot size ds. Figure 5 results from combining the two

equations

1 [4 (R___+h)] z [2]f2= 

and
8ticr dsh 12

W = n,_t T2---_ L DRd,v/-R-J
[3]

(ride t ,_/8hC,_ [4(RE+h) h12 [4]
togive P= _ _ [ DR-----R--_'.!k t m YKT2_ /

The parameter ds contains the information about DT, and affects the repetition frequency f2 which is

necessary through Figure 3.

In Table III, we outline the parameters for three standard active laser acquisition and tracking cases
which will be discussed in the following sections.

Figure 6: Composite transmit/receive mirror site shows how this concept would work.

The only purpose of the 20-m receiving mirror is to provide enough photons to reg.ister that a debris
particle is within the field of view, and tell the steerable high quality transmit/receive mirror in the
center how to point its field of view, which might be 30 times more narrow. Again [Figure 1], most
of the time, nothing will be seen. At 1 Hz, with ds = 4km, the target detection rate at 1500 km

vertical range will be 8 per hour.

It would be advisable to bury such a big mirror permanently in the earth, like the Hobby-Eberly

Telescope (9 meter effective aperture, ffl.45) in Texas. Like the Arecibo radio antenna, that
telescope is pointed, not by moving the mirror, but by .moving the feed in 1 degree increments and
then letting the Earth's rotation do the rest of the steering. Composed of 91 hexagonal segments, this
is physically the world's largest primary. Yet, the total construction cost for this device is
$13.5M. A Gregorian secondary corrects spherical aberration.
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Table IIl: Satisfying Constraints for Pusher Laser Target Acquisition

ORION Svstem:

Altitude h (km)

Target diameter d (cm)

Receive mirror diameter D R (m):

Bond albedo R:

DRd_/R:

Laser pulse energy W(kJ);

ds to return 10-photons from target (km)

Actual spot size ds used (km):

Rep rate f2 to search sky in 2 yrs (Hz):

Laser average power (kW):

Number of targets q (< h):

Detection rate for these targets (per hr.):

Actual photons received

Demo Near-term Longer-term**

300 300

1.5 3

3.5 3.5

0.3 1E4*

2.9 1.1E3

1.4 1.4

0.8 330

0.8 30

15 0.01

21 0.014

.... 10 (TEST)

N/A; LOC.

KNOWN

10 670

500 800

2 1.5

4.4 4.4

0.8 0.8

8 6

9.8 9.8

3.6 1.6

3.6 1.6

1 5

9.8 50

.... 40E3

....

10 10

800 1500

1.5 1.5

20 20

0.28 0.28

16 16

30 30

30 4

3.3 4

1 1

30 30

40E3 150E3

2 8

50 10

* Target is covered with comer cube arrays (fused silica bicycle reflectors) with 1o beamwidth

** Parameters in these columns differ from those for the ORION final report Longer-term Option

Table III shows that a 30kJ pulse at 1.061.tm incident on even a very dark, 1.5-cm target can return
the minimum required signal from 1500 km, and a quite adequate signal from 800 km. A 100-photon
signal would be obtained if the 1.5-cm target at 800 km altitude were bright rather than dark. There
is not room in the Table to show all cases, but repeating the last column on the right with a 20-cm
target gives 8,900 photons.

Figure 7: Photons received for several eases vs DRdX/R treats cases given in Table III.

Our 20-m receiver would have very low optical quality compared to the Hobby telescope, and should
be cheaoer to make. A surface figure of order 10 waves per 10 cm (100 larad) would be sufficient,
with a 30x30 array of 2-cm image spots covering the 3-mrad field of view at the mirror's 100-m

focus. A suitably small image of this array to match an array of single photon detectors can be

created by a high power optic without violating the etendue theorem. Segments of such a low quality
mirror could be replicated cheaply by machining, single-point-diamond-turning and mechanically
polishing. The reflective coating could be applied chemically - like your bedroom mirror - or by
vapor depositing aluminum on the vacuum furnace conveyor belt at PPG Industries.

The point is: it could very well be cheaocr tO create this mirror site than to use rad_ for acouisiti0n.

It is difficult to see how the total cost ot' l_he site could exceed $15M, based on the COSt of tti¢ Hobby
Eberly telescope. This compares well to the $80M estimated cost of reproducing Haystack.
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Now, we review detection of a moving target against a fixed background of stars (Figure 8).

If a target is found in the field of view,
making a reliable track requires getting 3
returns within the footprint (Figure 1), in
order to establish present location and

Target Return vector velocity well enough to provide the
instructions needed to center the footprint

target motion as fraction
of field of view •

Target Track
across detection
field of view

IS Area

;.(65 ms •

.*12.5%*

L]
.*---- 25%

on the target when the transition is made

from acquisition to tracking mode.

Only rarely will this be necessary --on the
rare occasions when a target is present and

then only during the first few shots
necessary to establish a track. So, triple

pulsing will not affect average laser power.

The two corresponding pulse formats are
illustrated in Figure 9. This concept first

appeared as Fig. 1 of § 10A in October '95.

From the formula for the fractional area of

a circle enclosed by two parallel chords

[Eqn. 5], we can determine that 99.3% of
the detection footprint is "useful area" for
track assembly purposes using our
strategy, when bmin/ds = 25%.

1s

3 pulses 30 kJ

at 15 Hz (fl),

repeated at 1 Hz (f2)

A) After a target has been detected

1 pulse 30 kJ
at 1 Hz (f2)

• 1 S _i.-._=

B) When no target has been detected (99.8 % of the time)

Figure 9: Pulse Formats for the Longer-term ORION Option

P=]-_ L " ds/ - ]
[5]
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Combining this prescription with a strategy requiring that we always have 3 returns within the
window, constrains the burst pulse rate to the value given by:

> lOv±

[61

for at least as long as one burst of 3 pulses. In the example shown in the Figure, this is 15Hz.

Signal to Noise ratio in the Daytime

Reilly did an excellent analysis of signal to noise ratio in his recent report, and there is no point in
repeating his results here.

The only important differences in our analyses are these:

1. The specific cases he considered were limited to 3kJ pulse energy and a 3.75 m diameter collecting
mirror, whereas we have considered 30kJ and 20m. These two differences have large impacts on
how the rest of the problem turns out.

2. The notch filter he uses has 0.05_tm bandwidth. I had assumed a bandwidth given by the time
bandwidth product of the laser pulse itself: for 5ns pulses, AX= 7E-7 _tm, about 5 orders of
magnitude smaller than 0.05_tm.

3. By limiting consideration to considerably smaller spot size at range, Reilly necessarily comes up
with much higher repetition frequencies, like lkHz, in order to cover space in a year or two. This
choice leads to MW average power levels, very difficult beam director accelerations and

transmit/receive interference. Our repetition rate is typically 1Hz, except when a target is detected.
Then, one or two triple-pulse bursts of 15Hz are needed. Our selection of laser and beam director

parameters makes it OK to have just 30kW average laser power, the same level required to remove
the debris [recall Figure 5].

How would one create such a narrow pass filter? By combining commercially available interference

filters such as those by Barr Associates, which have A_ as small as 7E-5 _tm, with a single Fabry-
Perot having a finesse of 100.

What does this affect? Nothing significant, except that one still does not have to worry about signal
to background ratio (SBR) even during the day in the case we discuss herein, as one also does not in
Reilly's case studies.

Why is this important? Because we consdier (DRds) products which are as much as 180 times larger
than Reilly' s, giving up to 4 orders of magnitude more background signal, which depends on the
square of that quantity, so it is good that we have more background rejection.

The bottom line is this: in both cases, SBR can be ignored even in the daytime, and SNR is

dominated by readout, or electrical, noise. Since our signals are about the same, our SNR's will be,too.

We conclude this memorandum with a matrix summarizing the case for active laser acquisition and
tracking, Table IV.
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ORION Sky Survey Time
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Photons received calculator
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!, hotomc Assocmtes i
] excellence in photonics ,|

Active Laser Acquisition and Tracking Option

;earch

of

;essment se Ratio [andover

=lcm ;ection mmediate imited by

=1500km ;ize in =200m
> 0.3 Irbit _it urs ',ount

Parameters of Active Laser A/T System which Exactly
Meets all Requirements

ParameterDay/Night Operation

Transmit/Receive Mirror Diameter Dv(m)

Acquisition Mirror Diameter Dr_(m)

Acquisition Detector Quantum Efficiency _QE

Laser Wavelength ([tm)

Laser Pulse Duration (ns)

Laser Pulse Energy (kJ)

Laser Repetition Rate [search mode] (Hz)
Laser Repetition Rate [tracking burst] (Hz)

Acquisition Mirror Spot Size at Max Range (km)

Transmit/Receive Spot Size at Max Range (m)

.Value

Yes

6

20

65%

1.06

5

30

1

15

4

Variable 150 - 0.5

Laser Average Power (kW)

Acquisition Mirror Type

Acquisition Mirror Surface Figure

Detector Notch Filter Bandwidth (nm)

30

Earth supported, segmented, non-
steering with moving feed

10 waves/10 cm

7E-4
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" tDayhgh DetecHon

40 ns "_ _12 ms ,] v-'l r--I [--]

n N R ILILSL3pulses20kJ: I I [ [ I I

target motion as fraction of _- 8%-,4
ds = lkrn field of view :_--- 24_

Figure 1: a pulse format to enable velocity vector determination
Target xyt track showing a line with
1=6 bunches of 100 photons each in
i row, amid B=540 randomly distri-
buted background photons (daytime)
:otal from 6 selected slices of 1024
0024 pixels (D=1024). B/D 2 = 0.005.
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|
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- i]__}- i 4 ms

- ' ""-[The target at 324.16 ms

/ II00-photonburst present

] _n only one data slice.
0 Ifhis data slice is selected
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ToPIc 10: _UMMARIZING THE ADVANTAGES OF A SHORT-PULSE ORION SYSTEM

1. Recommendation

Based on §1, we see that a low-cost system could be built with limited range [say 600

km, just enough to protect ISSA] to begin the ORION program. It is important to
start with an affordable demonstration system.

Wh i h h - 1 w ihw r ?

Wavelength

Beam diameter in atmosphere Db

1.06_tm

Spot size on target ds

4.2 m

Pulse length Zp 100 ps

Nominal range z 600 km

Pulse energy W 500 J

Pulse repetition rate f 50 Hz

Laser average power P 25 kW

27 cm

Strehl ratio

Atmosphere transmission T

50%

85%

114

36 MW/cm 2

7.3 GW/cm 2

2.3 E4

2 -3 years

$30M

Product Ib'Cp0"55 in atmosphere

Beam intensity in atmosphere Ib

Beam intensity on target Is

Target effects product Iszp 0"55

Time to clear LEO targets _<450km

Cost

We believe the cost for such a system, if it employs the short-pulse option, could be

built for $30M total, including beam director, computers and adaptive optics.

As is seen from the "100ps" point in the attached Figure, the laser and transmitting

optic combination just avoids SRS conversion and serious n2 effects in the

atmosphere, even at sea level, without being overdesigned. It is well away from
STRS effects. Furthermore, at 6km laser station altitude, there is a substantial safety

factor with regard to these effects.

2. What are its advantages?

• Since the pulse energy is only 500 joules, it is a small laser. It is 30 times smaller

than the LLNL "Beamlet". It does require special hardware, probably employing

STRS/SBS cascade techniques, following the work of Pasmanik and others, to

compress a nominal 20-ns laser pulse down to the required short pulse efficiently.
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Photonic Associates has references, including those of the Vavilov Institute and
the U.S. work, showing how this is done.

• Based on our experience, it will cost a lot less to achieve 25kW average power

(which is required for debris clearing in a reasonable time) with 50-Hz, 0.5-kJ
pulses than with, say, 1-Hz, 25-kJ pulses. The latter is a laser in the class of the

LLNL "Beamlet". In particular, our costing algorithm says that the 450-J laser
ought to cost about 5 times less than the 15-kJ Beamlet laser.

3. Scenario

A 500-J, 100-ps laser coupled with this 4.2-m mirror could create substantial effects

on a debris object. Taking target "B" of our debris matrix, for example: a 5-cm-

diameter object with A/m = 20 at 600 km range, B would intercept 12.9J per laser
pulse. Let's assume the laser is operating in the "hot-rod" mode, and can deliver 400

pulses at 50 Hz in 8 seconds before it shuts down. With a Cm of 7.6 dyne-s/J [best

guess for this carbon phenolic material], 400 laser pulses give Av = - 16 m/s, which

should be easily detected by radar or other means. Note that this is about 10% of the

input required to re-enter the target, depending on its orbit eccentricity.

How ffectiv i i on t ical debri tar et"B"?

Target material

Target diameter d

Target A/m

Target mass m

Absorbed energy per shot Wabs

Coupling coefficient C m

Velocity change per shot Av

z_v in 8 sec burst @ 50 Hz

Carbon Phenolic

5 cm

0.7

28 g

14.4J

7.6 dyne-s/J

- 3.9 cm/s

- 15.6 m/s

4. Recommendation

It is recommended we give serious thought to this laser option, in order to obtain

the lowest possible projected system cost which is consistent with an effective
system.
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TOPIC 11: ORION DEMO

Introduction

In recent weeks, the outline of a possible near-term ORION demonstration experiment has

emerged. It is the purpose of this memo to summarize it. Participants in the dicussions have

included Jim Reilly, myself, Bob Fugate at Starfire Optical Range, and Herb Friedman, John

Murray, Lloyd Hackel, Brent Dane and Jerry Britten at Livermore.

Laser Equipment

Originally, Lloyd Hackel and Brent Dane were to deliver an illuminator laser and Herb

Friedman a sodium guidestar to Bob Fugate. Recentlly, to support the effort in Bosnia, cuts

were made in Fugate's program by which Friedman's guidestar will not be funded and

Hackel's illuminator will be completed (since the money is already sunk) but not delivered.

These decisions could be reversed.

Here are summaries of the two laser systems:

Laser Wavelength Pulse_ Pu_u_!_l_n__e_r.g_ R_Kc,12rate

Guidestar 589 nm 150 ns 6.7 mJ 30 kHz 0.2 kW

Other parameters: Smaller version installed and operating at Lick observatory.

Laser Wavelength Pulse _ Puls_ n.e__o__e_rg_ R_KCl2rate

Illuminator 530 nm 10- 700ns 120J 10 Hz 1.2 kW
(20-s, 30 Hz burst 3.6kW)

Other parameters: Output aperture 50 cm 2. Uses phase conjugation to get diffraction limited

beam quality. Output (optical) frequency stable to 25kHz. Four 30-J beams, SBS wavefront

beam combination in a nonlinear cell. Cost, new and installed: $4M.

This laser would be run at 1.06_tm wavelength in our application.

Starfire modifications

To do the demo, Fugates's telescope would have to be modified.

There may be more, but the modifications which are easy to anticipate are in the 25-cm

diameter part of the train having to do with tolerating peak laser intensity, or beam transfer.

1. _orrector plate

In its present configuration, the beam comes to a real focus in air. This can't be tolerated in
the demo, because the laser would cause a spark in air. A 25-cm corrector plate (a lens)

would be installed adjacent to the secondary or tertiary mirrors to solve this problem.

2. Mirror HR coatings

Parts exposed to laser flux in the 25-cm diameter part of the beam need to be recoated with a

high intensity HR (high reflectance) coating. This statement includes an estimated 4 fiat

turning mirrors and the 1000-element rubber mirror. The latter is difficult, because it is a

thin membrane which must be epoxied to the actuators before final finishing and coating.

The solution is the room-temperature sol-gel coating process. This is a good and

inexpensive approach even though it involves up to 23 layers. Furthermore, if damage
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occurs, sol-gel coatings can be stripped and redone fairly quickly. Jerry Britten at Livermore

routinely does this and already gets 1/10th wave surface figure. If the parts were dipped for
each coating at slightly different azimuthal angles to the liquid surface, the 1/50th wave

irregularities would add up to quite a bit less than 1/10th wave in 23 coatings.

HR coating damage threshold requirements for 25-cm diameter beam at 10ns:

PulSe _ Surface area crn 2 Pk Intensity* _ Power** _ Intensity

120 45 ° mirrors: 690 3.5E7 W/cm 2 3.6 kW 10 W/cm 2

120 AO mirror: 490 4.9E7 W/cm 2 3.6 kW 15 W/cm 2

* Assuming 2:1 peak to average ratio, 10 ns pulse

** During 20-second, 30 Hz burst and 2:1 peak to average ratio

Lowest damage threshold of sol-gel HR coatings under above conditions:

Pk Intensity* _ Intensity

1.1E9 W/cm 2 5E3 W/cm 2

In short: there is no problem with either the CW or the average power levels anticipated.
The mirrors do not have to be rebuilt, just recoated.

Back when we were talking about using 100-ps pulses, there might have been a problem, but
not now.

How to demonstrate acquisition and pushing

Exotic Coupling Coatil_zs

So how is it possible that optics only twice the size of the beam at the target which we wish
to damage, will not be damaged?

There are two reasons: First, damage intensities for high quality HR coatings are from 4 - 10
times higher than for common materials.

Second, we want to make the demo target "cooperative" by designing in the very best

properties from our point of view. There are several specialized coatings which will
generate good thrust well _ the plasma formation threshold.

Reilly has recently done a number of calculations on such materials which show that, for

example, arsenic should generate very good thrust at an intensity nearly 10 times below that

for plasma formation, just due to intense vaporization of a low boiling material.

Furthermore, measurements I did several years ago on another low boiling material

(pyroxylin) gave similar results: Cm = 33 dyne-s/J for intensities 5 times below plasmathreshold.
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Low orbits with Long Lifetimes

4/4

16/8

kLk_ 

160/40

200 x 200

250 x 250

40/10 200 x 480

100/35 300 x 300

200 x 900

It is important to minimize target altitude, both because we
want the Shuttle to be able to insert the objects, and because

we want to minimize range for an easier demo using a low-

energy laser. An additional reason is easy acquisition, using

only active optics, that is, the same laser.

A quick glance at the lifetime graphs of § 7 shows that it is

not easy to get a significant lifetime together with an orbit
altitude of even as low as 300km. A value of A/m of 0.05

cm2/g in the ram direction is about as much as we can take.

Assuming this value, the Table shows what lifetimes you

can get, and indicates that 300km is the minimum altitude

that makes sense. Eccentric orbits would last longer, but would create a real debris hazard to

objects already in orbit. Not to mention the added difficulty of creating such an orbit from

the Shuttle.

Please see Figure 1. It is a joint Photonic Associates/New England Science & Technology
invention which satisfies all the requirements. The plan would be for 10 of these targets to

be dropped overboard from a getaway special package on the earliest available Shuttle flight.

In a Getaway Special, a 2 cu. ft. box is permitted, and one wire to a switch which the

astronaut only has to flip early in the mission. Many people have launched small satellites
that way. The cost is about $75k. Target parameters

Parameter

Nose mass

Tail mass

Total mass

Total cross-section

facing flow

A/m

Value

52 g

36 g

88 g

4.6 cm 2

0.05 cm2/g

200 - 400 cm 2

0.5

Target beam

intercept area

Strehl ratio

Beam footprint

on target

Cm

Atm. transmission

Fluence on target

Energy on target

Av per laser pulse

av per 20-s 30-Hz

burst of pulses

200 cm 2

33 dyne-s/J

0.85

0.6 J/cm 2

102 J/pulse

38 cm/s

230 m/s

are summarized in the Table at the left.

This target shoud respond magnificently!

Effects which we can demonstrate with this target

The Figure 1 target has several other useful aspects:

1. With alternating black and white fins which also

alternate coupling coefficient from high to low, the
laser beam will cause the target to spin at a high rate

at almost any incidence angle. This solves any

difficulty which might exist in measuring changes in

range rate with a relatively long laser pulse.

2. The high-density ring at the front (this could also
be a ball at the front, but the ring maximizes surface)

moves the center of gravity well forward, so the
device will have a controlled orientation parallel to

the ram direction.

3. The ring at the front also provides a separate

mounting surface which will not produce plasma for

damage-resistant fused silica "bicycle reflectors"

imitating the common ones, particularly in having

1-degree return beamwidth. Basically, this is an array
of corner cubes. This device will automatically return

the intercepted beam to the source independent of its

orientation with a _ of 26.000 relative to an object
with Bond albedo = 1.0.
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Here is what we can demonstrate-

1. All-optical Acquisition and Tracking

2. Spinning the target as a minimum

3. Producing net momentum change

4. Re-entry
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TOPIC 12: THREE METHODS OF OBTAINING ULTRASHORT 1.06 um LASER PULSES

In this section, we will compare the three principal methods of obtaining 100-ps pulses which have
been demonstrated in the literature. Much of this work has occurred at the Lawrence Livermore

Laboratory and at the Russian Vavilov Institute. Experts at either laboratory are capable of executing
any of the approaches in actual hardware.

Two of these methods feature clever schemes to deliberately compress a longer pulse. Of these, one

involves the use of a holographic grating pair to passively compress a so-called "chirped" large
bandwidth pulse of about l0 ns duration. The second compression method uses the physics of
Stimulated Brillouin Scattering (SBS), Stimulated Raman Scattering (SRS) or both in a cascade to
provide passive compression.

The third method is the "brute force" approach: make a very short oscillator pulse, and amplify it in an
amplifier of adequate bandwidth.

1. Holographic Gratings

The beauty of this technique is its nearly perfect energy convesion efficiency (in principle). However,
the difficulty is that these gratings are limited to about 1 meter in transverse dimension by current

technology. Inspection of the figure above will show that the chriped input pulse to the grating must

Neodymium laser _
10-ns pulse duration -_ _
with chirped output ._1--[_

"bluer" portion bends less,
follows longer path

Output
holo "redder" portion bends more,

follows shorter path

then be not much longer than 3 ns, due to the finite'speed of light. Unfortunately, 3 ns is too short to

get good extraction and high beam quality at the same time from a neodymium system at the presenttime.
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2. SBS/SRS Cascade

input

SBS medium

e.g. benzene

r

The advantage of this technique is its simplicity and totally passive operation in shortening a long input

pulse, by as much as a factor of 10. The pulse reshaping that results is due to strong satruation of the
input or pump wave by the leading oedge of the counterpropagating output or "Stokes" wave. A similar
diagram describes the behavior of a reverse SRS pulse compressor. SBS and SRS units can be used in
cascade to obtain certain desirable effects.

Total compression ratios of about 100 have been obtained, just about what we require in the ORION

system (efficient conversion to 100 ps pulses which couple efficiently to the debris target, from cheap,

relatively low energy 10 ns inputs).

The problem with this technique is: low efficiency. Compression ratios of 100 go along with energy
efficiency which may be as low as 2%, unacceptable for ORION. Such a low efficiency would actually
make it less expensive to build and use a higher energy long pulse laser.

3. Amplfiying a short oscillator pulse

I 100-psoscillator I ne°dymiumamplifier 1 _ °utput

This approach is deceptively simple. It also depends, at the present time, on unattainable combinations
of laser parameters. The problem is that the brightness integral or "B-integral" which determines beam
breakup due to nonlinear refraction in the glass host of a solid state laser system is the same integral,
apart from constants, that determines energy extraction efficiency. And, for 100-ps pulses, the result is
that efficient extraction is not yet possible for lOOps pulses if high beam quality is also required.

The consequence of all this is: At this time, the best choice is a 5 or 10 ns pulse for ORION, if that

pulse is generated by a solid state laser system. The situation may well improve in the next year or two
as efforts at solid state laser R&D labs proceed.
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TOPIC 13" FINAL ORION SYSTEM REGOMMENDATION$

Latest info indicates 5 to 10-ns, rather than 100-ps. pulses

1. In order to address the 1 to 20-cm threat range of debris sizes in a time ---2 years, the
average power output of a repetitively-pulsed pusher laser must be -- P = fW = 30kW.

Previously, the repetition rate f and pulse energy W were free parameters in my

analyses, to be driven by achieving lowest laser cost. In earlier reports, it was suggested
that laser cost for a certain average power P should go down as pulse width z decreases,

and that "¢=100ps looked attractive, based on encouraging statements I was getting from
the Livermore laser experts.

Since December, information from Livermore has reversed that story. It now appears
that z=5ns is the shortest-pulse laser one should use in a repetitively pulsed 20kW

ORION laser. Reasons for this will be provided in detail in a subsequent report. The
short version is: a lot of the requisite R&D has not yet been done. It should still be

cheaper to use shorter pulses, but laser builders are not yet confident about doing it.

2. At the same time, it was always clear that the pusher-laser-as-illuminator idea

required high energy pulses or a big receiving aperture to function effectively at
significant debris range.

Final recommendation

Based on previous work plus an assessment of what can be economically built today,
here is the final system we propose:

What is the system which we propose?
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Wavelength K

Beam diameter in atmosphere Db

Pulse length Zp

Nominal pusher range z

Pulse energy W

Pulse repetition rate f

Laser average power P

Spot size on target ds at max range

Strehl ratio

Atmosphere transmission T

Product Iblp 0"55 in atmosphere

Beam intensity in atmosphere Ib

Beam intensity on target Is

Target effects product Is'Cp°.55

Time to clear LEO targets <450km

Cost

1.06Bm

6m

5 ns

3000 km

3O kJ

1 Hz

30 kW

95 cm

50%

85%

577

21 MW/cm 2

705 MW/cm 2

1.9 E4

2 -3 years

$90M



We believe such a system could be built for $90M total, including beam director,

computers and adaptive optics.

Following are summary graphs for the work we have completed.
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ORION Laser System Design Logic Diagram
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PhotonicAssociates
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repetition frequency Pulse intensity on target
Laser pulsewidth Change in target velocity
Laser wavelength tm ORION mission duration

Cm Mommtum coupling coefficient SRS Stimulated Raman Scattering
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Velocity change on

Target Av = CroW/roT [

Acceleration _, = CmP/mT]
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APPENDIX E

ORION OPTICS AND TARGET ENGAGEMENT

Glenn Zeiders

The Sirius Group
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ORION Optics and Target Engagement

1. Propagation and Engagement Conditions

Diffraction Requirements

Although laser systems are
normally designed to match the
beam with the intended target,
conditions for ORION are such
that even the largest reasonable
beam directors will tend to flood
the sky, spreading much of the
energy far beyond the relatively
small debris particles. A laser
beam from a finite aperture
spreads by diffraction, the
resulting peak intensity at range_
R being given _by I = P/Z2R2
=D2/4 S = P/(=d'/4) where P is

1000

peak Intensity I Power at TBget, J/cm=/kJ

100 10 1

I

1 10 100/1 10

SpotDWn_r,cm Sllee_eAl_tu_Dlmt=_D_,m

}

0.01

IO0

the power reaching the t_/4plane, Z is the wavelength, ;c is the transmitting area, and d is the spot size. The Strehl ratio S accounts
for non-ideal propagation effects such as turbulence, and can be much less than unity in practice.

Since most of the space debris of interest for mitigation by ORION is at altitudes from 800 to 1200 km, laser

spot sizes of at least 20 cm (and perhaps much larger) can be expected even with short wavelength (1.06p
for Nd:Glass lasers) and with beam directors approaching the size of today's largest astronomical
telescopes. While these relatively large sizes exact a toll from the pusher lasers in view of the required
output power, it will be shown that they, together with the short wavelengths and large apertures that are
needed to achieve them, are nevertheless very costly in terms of both turbulence compensation and the
associated sub-microradian pointing accuracy, and a more complete optimization at the system level might

yet recommend operation with even larger spot sizes.

_c Turbulence and Adaptive Ootics

Aside from nonlinear propagation effects that can normally be avoided by reducing peak intensity levels, the
major contributor to non-ideel beam spread and loss of Strehl ratio is atmospheric turbulence (see the figure
on the next page) which disrupts the beam by superimposing regions of varying refractive index (much like
lenses.) Turbulence effects both telescope images and transmitted laser beams by reducing the coherence
and scattering the light with short correlation scales (often reducing the effective aperture size from the full
one D to a much smaller Fried scale r0), whereas large scales tend to tilt the wavefront and steer the light.
Adaptive optics attempt to counter these effects by measuring the distortion of a reference wavefront
traversing the path and introducing the conjugate (opposite) distortion in the primary wavefront. The source
for the reference wavefront can be, for example, a natural star, reflection from an object (like a target), or
emission from a laser beacon projected from the ground. Turbulence of course varies both spatially and
temporally, so correlation between the two wavefronts will be lost ever increasingly large scales as any
transverse displacement of their axes is increased, an effect usually refewed to as anisoplanatism. The
degree of correction improves as the size d of the control zones is decreased, and d = ro generally
represents a useful cost-effective compromise. Such correction can be achieved with state-of-the-art
segmented and/or deformable adaptive optics systems, but it should be realized that many thousands of
elements will be required for the large apertures of interest for ORION - and costs for such systems
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The latter effect is especially important for propagation to space T,,=.,==,,_c.,, ,,-

because the "isoplanatic" angle over which coherence is Ixese_ed is usually much less than both the angle
between the target and a sufficiently-bright natural star beacon (typically spaced several hundred
microradians) and the lead-ahead angle 2v/c cos0 required to account for the distance that the target moves
in the round-trip transit time for light between the ground system and the target. It is because of the lead-
ahead that the "flash" from the beam impinging on a target cannot be used directly for pointing, and a
properly-located artificial beacon will therefore be required to correct the outgoing laser beam.

To quantify these statements and to provide a useful example, the allov,wble separation between two
parallel paths is related to the Fried coherence length ro = 0.185(;t.2/_) _ = 11.2 cm for a Kolrnogorov
spectral distribution, and the allowable angular separation from a point on the ground is the isoplariatic angle
0o = 0.0582 (_.'/l_n) _' = 13.5 _rad where _. = 1.061_is _ w_...elength,and _ the turbulence _ p_
= sect10 J"C.2 hm dh have been evaluated for an ow-zenitn angle 0 = 30 and using a "typical" HV-21
vertical profile with a pronounced high-altitude contribution. The RMS tilt produced in a path of diameter D
= 3.5 m (that of the Starfire telescope) is _- = 2 47 _/.,,/D l_s = 3 oo ,,,.._ ,.,,...,_ .,. ............
L.,,a. ............. " _ .m.,r,,. pill Illllllii UR:7 r'_Nl_) 'OR o|l_eref_e

nu_.w_ ,t_,_,p__r__.at an.angle o__ the same point on the ground is given by &0T/(Z = 3 27 _/-- /13" -
u.w-,,.u_ unless omerwlse corrected, the value of rowould produce spread withaone-si,.,_o _'_- _._.";-",_ -_

• . . • I_H_;a INilli lllll_l_ IJ.q;_

_r0 -- 4.27 l_rad,whereas the spread due to ideal diffraction would be only 0.45 _ = 0.136 prad.
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Several typical distributions of atmospheric turbulence are
shown at the right, and their effects on propagation are given in
the nomograrn. Turbulence always tends to be very high near
the surface due to the Earth's boundary layer (dominating the
contribution to ro), but locally-severe conditions can arise at
higher altitudes due to wind shear. High tropospheric winds in
particular often lead to pronounced turbulence at upper
altitudes, and, although the resulting strength is such that they
contribute little to r0 itself, their distance from the aperture can
cause important coherence losses between paths that diverge
from the aperture.
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continue to be at least about $1000 per channel (although $200-$250 per channel is recommended for use
as an eventual goal.)



Thesemeanfrom the standpointof adaptiveopticsfor either imaging or beaming that the reference
"guidestar" must be located within the isoplanatic angle from the primary path for it to be effective, and this
can generally be accomplished quite nicely for astronomical observations (at least for telescopes up to
several meters in diameter) with an artificial beacon produced by laser excitation of the sodium layer at 92
km altitude. The tilt anisoplanatism is no more than (0.00410)(13.5) = 0.055 i_rad in that case, so image
motion will be small compared to the diffraction size. Matters, however, can become considerably more
complicated when correction must be made for a laser beam targeted against a rapidly-moving distant

object.

_dJurn

3.5 m

The status of a number

The high-altitude turbulence that most contributes to isoplanatic problems limits the
effectiveness of the beacon as well because the solid angle from the beacon to the
aperture does not account for all of the turbulence along the full path, even with a
sodium beacon which, at 92 km altitude, is the highest artificial one that has been
identified. This effect, commonly referred to as focus anisoplanatism, leads to the
concept of a "beacon coverage size" dothat defines the largest aperture that can be
covered by a single beacon (a few meters at typical conditions.) Altematively, it
also can be used to determine the number of beacons N = (D/do)" that would be
needed for a large aperture, but each such beacon must be =tagged" to differentiate
its wavefront from the others, and the multiple signals must then be "stitched"
properly to produce the proper final wavefront. Unfortunately, the ability to actually
use multiple beacons has lagged the theory, and there have been no truly
successful demonstrations at this time. Until then, although there appear to be no
fundamental reasons why multiple beacons cannot be applied, the use of an
aperture larger than that which can be handled with a single beacon should be
regarded for now as a very risky proposition.

of adaptive optics systems as of 1/94 is reviewed in the table on the next page.

_rK]aoement Profile n_, Q 1000 I=m 219 146 93 0
NIIlude, seconds
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The engagement profile at the .. A -,=
right shows some important ", ¢ ""
charactedstics of the ORLON O,Jx= : ,' " JP_ i " 'KaI_X /. f
system, and serves to identify ,, , m.mp-

/

several as-yet unresolved : _ ,' .." (.t,,_,,,_/_
issues. Times and angular T,._ :='m_d ,'
rates are specified for a 1000 _ ,_ ,' / _• J._=_._"

I /

km debris altitude, but the 0._sc_>_=0_ @'_0o0_ .J _
results can easily be scaled to : .-

other altitudes. _ 0_""

The target will typically be :: //,o" s,,m=_,=,_,-_=,,,,_v,_m
engaged at about 60_ from ;:..-'"J_"
zenith (30° above the horizon)
because R" and atmospheric losses rapidly increase beyond there. Passive optical acquisition with one or
more simple wide-FOV telescopes, limited by uncorrected turbulence to about 10 i_rad resolution, appears
to be a very viable option for ORION, and a relatively long time (93 sec (_ 1000 km) is available for the
acquisition system to establish track and to ensure that the target is in fact debds before possibly switching
to fine track at about 45°. The pusher laser can then commence operation, and a relatively long time will

again be available before it ceases operation before zenith to avoid tangential acceleration of the target
(which m:)uld increase debris lifetime.). Note that elevation rates at 1000 km are quite benign, and that
rates above 1 degree/sec would only be encountered below about 450 km (azimuthal rates depend upon
both the trajectory and the optical mount design, but will only be important near zenith - where operation

should be avoided anyway.) 2.57



DemonstratKI or
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The problem here is the need for "Kentucky Windage", the lead-ahead required to account for the distance
traveled by the target during the elapsed time for a signal from the target to arrive at the sensor, be
processed for adaptive optics correction, and then for the laser beam to retum to the target. This is not a
measured quantity, but, rather, must be calculated and established by dead reckoning over tens of
microradians to an accuracy of the size of the laser spot (about two orders of magnitude smaller.) Unlike a
duck hunter who is smart enough to use a shotgun instead of a rifle to shoot a fast-moving bird, the slowly
pulsed pusher laser wants to act like a rifle, and the relative size of the lead-ahead will make it very difficult
for a tracking system (active or passive) to provide the required accuracy by dead-reckoning regardless of
the certainty of orbital motion - especially when the laser "rifle" is being moved about by turbulence.

Though typically only a few milliseconds_300tl_edistances are far greater than target dimensions, and the lead-
ahead angle 2V/c cose (42.4 p.rad at and 1000 km altitude) is generally so much larger than the
isopianatic angle that the signal from the target will be useless as a beacon for the adaptive optics. A
dedicated laser guidestar within the isoplanatic angle about the outgoing path (i.e., "leading" the target) will
therefore be essential for reducing the beam spread, but less direct, however, is the means for handling
turbulence-induced tilt because the guidestar signal is itself steered by turbulence. The debris objects of
interest tend to be smaller than the beam size, and we have already shown for the case being considered
that the RMS tilt angle greatly exceeds the ideal diffraction angle (by a factor of over 20), so the probability
of hitting the target will be extremely low if we do not accurately measure or predict the tilt.

The most attractive option for doing so appears to be to use the target itself as a reference for tilt, accurately
biasing the track and tilt data to account for the lead angle, and that should be possible because of the
relatively invariant nature of orbital flight. However, it should be realized that the combination of tilt
anisopianatism and the need for highly accurate tracking data will require that the pusher beam and the
optical signals from the target and the guideetar all be shared by the same aperture - a non-trivial hardware
problem -- because of the pronounced degradation that would otherwise result from strong low-altitude
turbulence. Both the pusher beam and the target tracker must use adaptive optics to minimize spread, and
their corrections will necessarily be different because

their angular separation considerably exceeds the
isoplanatic angle (let alone the fact that their wavelengths
may be different.) All of the wavefronts will essentially tilt
together at a characteristic frequency VT/D ,= 10 Hz for
the given conditions, so the tracking data must be rapidly
processed in view of the need for accuracy to a small -, m
fraction of the large overall excursion of the tilt The
small time slices required for gathering the tracking data m
and the need to closely synchronize it with the pusher
beam strongly suggest that the target tracking
illumination be provided by either a CW or very-rapidly-
repped laser, probably operating at yet another
wavelength to ease the difficulties of aperture-sharing. A _ _ ._ _
suggested functional block diagram of the system is eco_ :croR '
shown at the right to illustrate the key components and _ _ .,_ ,_
information flow. The first splitter is the only high intensity oco_
shared component beyond the basic telescope/director.
Neither the beacon nor the illuminator laser need, of I _ _ I

course, be co-located with the pusher/sensor system.
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Should extrapolation of the tracking data not provide sufficiently accuracy, it may be necessary to follow the
approach of the duck hunter by broadening the beam considerably (i.e., to use a "shotgun"and to accept the
greatly decreased intensity) and/or to share the main aperture with a boresighted scanning laser (a CW or
rapidly pulsed "machine gun') that can be continually steered to maximize return from the target.
Regardless of the approach, the complications involved in boresighting with a high energy pulsed taser
could prove to be so daunting that it might be worth considering the use of a far more powerful and rapidly-
steered CW or highly-napped pusher laser to overcome both the lead-ahead and aperture tilt problems,

probably eliminating the need for a fine tracker at the same time.
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2. LargeApertureTelescopesandBeamDirectom

It appeemto berno_likelythata largebeamdirectorwillbe needed for ORION to produce an accapiab_
spot size. Altho_h the op6cal telescopes described here are not beam directors per se, they are large
enough to be directly applicable to ORION, and each in its own right is an exceptional Instrument that
displays the design philosophy and coet_ that will be required for orbital debris removal withground-besed lien=.

3.67M AEOS and 3.5M Sterllre T__

The 3.67 meter AEOS system shown above is presently under construction in Hawaii, and has extremely
expensive site-related costs that do not meet our objectives, but its functionally-similar predecessor, the 3.5
meter telescope at Starfire Optical Range in Albuquerque NM, does so admirably. The 27M$ total cost of
the latter included 10.5M$ for the Corttmves USA optical mount and 7M$ for the primary mirror from the
University of Arizona's Steward Observatory Mirror Laboratory. The very moderate telescope cost is due in
large part to the use of a 4500 lb. monolithic primary mirror that broke from tradition by using a thin spun-
cast borosilicate facsplate with computer-controlled actuators to compensate for deformations of the
honeycomb sandwich base. Other unique features include a complete closed-cycle water heater/chiller
system for precise themml control and a protective enclosure composed of three 9 ft. high, 70 ft. diameter
cylinders that collapse around the telescope to provide complete ventilation and an unobstructed view for
high-speed satellite tracking. Both systems are designed to monitor a variety of space objects, and their
slew rates (18.3 deg/sec in azimuth and 4.75 deg/sec in elevation) are sufficient to track even very low-
altitude targets. They will eventually incorporate deformable adaptive optics at the end of the F/200 Coude
paths to provide the desired resolution, but delivery of the 3.55M$ 200W sodium guide star from LLNL for
SOR has been delayed by AF budget reallocation. The systems are specifically designed for imaging, and,
as a minimum, the present silver-coated optics throughout the Coude path would probably have to be
replaced for high-power operation. A 12 in. 5 mrad full FOV scope with an intensified camera is available
for acquisition. The SOR site is located near the end of the runway of the Albuquerque IntemaUonel Airport,
and FAA approval is required for individual shots.
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Eventually expected to operate as an interferorneter, the two 10 meter Keck astronomical telescopes on
Mauna Kea in Hawaii are the largest in the world, and they again broke with conventional design tradition by
each employing an array of 36 hexagonal mirror segments, each in turn actively supported on three
whiffletrees with computer-controlled actuators to control distortion. The required overall parabolic figure
was obtained by precisely pre-stressing each of the mirror blanks, polishing them to a sphedcal curvature,
and then allowing them to relax to the final shape. The overall weight of the Keck telescope is 596,000 Ibs,
about half that of the 5 meter Hale telescope, and about three times that of the Starfire telescope (186,000
Ibs.) Subsystem costs are shown in the figure, and it is quite significant that they are only about three times
those of the Starfire telescope. A 349-element deformable mirror from XJnetics will be available soon to

provide infrared turbulence correction (note that d = DI_/N = 54 cm is much larger than typical values of r0 in
the visible.) Although designed exclusively for astronomical observations, it is interesting to note that their
maximum design slew rate of 3 deg/sec ("anywhere to anywhere in under 2 minutes') would be sufficient for
the needs of ORION.

Hiqh-Pow_" Beam Director

No high-power beam directors of ORION size exist in the Wastem world. The telescopes described above
are designed for imaging, not for beam directing, and their optical designs attest to that fact. The large
primary mirrors themselves do not pose a sedous problem because the flux levels on them tend to be quite
low (e.g., 10 MW on a 10 meter mirror corresponds to only 0.13 Wlcm 2- one solar flux - at 1% absorption),
but the smaller mirrors in the Coude path are typically subjected to 100 times or more intensity, and that will

generally require more damage-resistant coatings and actively-cooled substrates. The most vulnerable
elements generally tend to be those associated with the adaptive optics system, e.g. the high-power beam
splitter for the wavefront sensor, and the active mirror itself (if it is in fact situated in the Coude path.)
Nonlinear beam propagation becomes a major issue as well within a telescope pdmadly because of the high
intensities in the Coude path, and a high power beam director will usually employ beam conditioning using a
sealed optical system with a low absorbing flowing gas, and that in turn will require transmitting windows to
isolate the gas from the surroundings.

These _ould represent rather extensive changes of the existing systems (which, of course, are dedicated to
applications that don't need those mods), and a concept that might be suitable for a large beam director to
meet the requirements of the ORION mission is the coelostat shown on the next page. This design was
specifically configured to use the PAMELA segmented primary mirror concept which permits r0-sized
adaptive optic elements instead of ones reduced by the telescope magnification ratio to a few millimeters,
and places them on a rigid base to minimize control-structure interactions and to allow active cooling if
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r_e_, The r_d _ _ _ov_ st_lHy, _k_s _ady _ th_ho_ for U_r_ and
eleotro-mechwlical control, and enables the use of an active secondary for additional correction. The
sealed rotating housing with a verticelly-mounted window protects all of the high-value components and
provides a controlled environment for the high intef1_ty laser path. The most argumentative (dements of the
design are the two massive 450 mirrors, but they execute rather sdmple motion, and can be of very
lightweight design with active figure correction via the adaptive optics.

Coat

The optics represent the moa fundamental unit of any telescope or beam director, and scaling philosophy in
the business places a premium on their total mass by assuming that other system and subsystem weights
and costs are ell linearly proportional to it for s/re,far systems. Such scaling has little firm basis in
engineering or science, but, rather, it is based on good design practice wherein improvements in one
component tend to be mirrored in others because of both competition and cost-effectiveness (because
relative Improvements in a minor component would better be made in a major one.). An accepted rule with
astronomical telescopes is, in fact, that the cost of the total telescope and mount is about twice that of the
optics, and the total facility is about twice the telescope. Both the Keck and the Starfire systems fit this
guideline quite well with regard to cost, but the agreement may be somewhat fortuitous in view of the
disparities in telescope mass and mirror cost. The high slew rates of the Starfire telescope resulted in a
much heavier telescope relative to the primary 10'
mirror, but its lightweight mirror was relatively
expensive, it is thought, due to recovery of coats
for spin casting development. Not to be
discounted, too, is the fact that another major
factor in any such system is the cost of high-tech
support, and Starflm's dedicated Air Force
personnel and Keck's university support probably
had major impact on the very moderate overall
costs.

I0'

10'

The problems associated with simple power-law lo'
scaling am shown at the right where mass is
plotted for a large number of mirrors of various
types of design. The Keck and Starflm minors
themselves actually follow conventional D2.e 10
scaling, but they represent lower extremes of
widely scattered data, the dispersion of which can
produce huge numedcel differences at such large 1
sizes. Those differences represent a major
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system technology and design ddver because high values can simply not be afforded, and paradigm shifts
have to be made. In the interest of cost realism. As a result, the overall cost of the Keck scales almost
linearly with D from Starfire, and a major change like the coelostat concept might perhaps be the next step
that would have to be taken with radical redesign for a much larger telescope.

Economic realism dictates that means be found to continue such a scaling trend.

3. High-Energy Lasers

The choice of available lasers for the ORION mission is really quite limited because of the need to produce
a beam of high energy pulses at a high duty cycle on a regular basis for long periods of time and to
propagate that energy through the atmosphere to a very small spot at long ranges in space.

The CO2 laser was the first to operate in a very high power mode, and its lower power versions today set the
standard for high reliability in the industrial world, but the 10 - 11rp wavelength is prevented by diffraction
from producing the target energy density needed for ORION. Another system that has attracted
considerable commercial interest, partly because of its ability to actually break the chemical bonds of the
material that it interacts with, is the excimer laser which operates at the other end of the wavelength
spectrum in the ultraviolet and short IJV; the potentially high single-pulse energy and small spot size has
also caused considerable interest for use as a space-based laser weapon, 10utthe available parameter range
of pulse energy, pulse length, and rep rate don't mate wall with the ORION requirements, and the short
wavelengths greatly complicate the use of adaptive optics for turbulence correction. Similar arguments
pertain to most of the other high energy laser systems that have been developed for military and/or
industrial use (e.g., iodine @ 1.3rp, HF/DF @ 2.7 - 3.8rp, and CO @ 4.8 - 6rp), the result being that the only
remaining viable candidates appear to be the neodymium glass and free electron lasers.

Solid state neodymium glass lasers are widely used for inertial confinement fusion programs because of
their ability to produce high energy in relatively short pulses at short wavelength - 1.06rp, but readily
doubled and tripled for operation in the visible. Lawrence Livermore National Laboratory has led this
country in the development of such lasers through the massive Shiva, Nova, and soon-to-be NIF (National
Ignition Facility) systems, and their currently-operating Beamlet laser with its 20 kJ, tens of nanosecond
pulses may be uniquely suited to the ORION mission if the system can be cooled for operation in a
repetitively pulsed mode. A major benefit of the concentrated R&D that has gone into those systems is the
availability of specialized hardware for such functions as frequency doubling, beam isolation, and cleanup, a
notable example of the latter being the SBS (stimulated Bdllouin scattering) mirror that has been used at
LLNL to generate a phase conjugated beam for real-time cancellation of thermal distortions. Caution is
simply advised that these lasers are very expensive, and their present location in the heart of California's
heavily-populated Uvermore Valley is less than ideal from every viewpoint for ORLON. Nevertheless, LLNL
has performed ground-to-space propagation from there, and they have - or could soon have - the
capabilities on site to vividly demonstrate the debris clearing concept.

The free electron laser remains a candidate for ORION because of the advantages offered by its wide
operational parameter space (including wavelength), potentially high efficiency with electron beam recovery,
and excellent beam quality, but it also represents one of the most dramatic failures of the DoD high energy
laser program in terms of dollars spent per kilowatt output. It has, however, been pursued far mere
successfully in the former Soviet Union, and it and other systems developed there might prove more
suitable for orbital debris removal than would their US counterparts if certain biases by our government and
its industrial partners can be overcome. The most serious technical question involving the use of an FEL for
debris clearing is its ability to actually produce the desired target interaction: for example, a 200 kW FEL
(e.g., the Microtron RF system proposed for near-term delivery to the U.S. by the Budker Institute in
Novosibirsk) operates at about 20 MHz with about 20 psec pulses, and, regardless of the details of the
macropulse format, this corresponds to no more than tens of millijoules of energy per pulse whereas target
coupling requires at least tens of joules at that pulse duration.
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Thebenefitsof a well-correctedlargeaperturebeamdirectorforORLONcannotbeunderstatedbecauseof
theprofoundeffectof the resulting small spot size on the laser system itself. A 10 cm spot on a target at a
range of 2500 km, about the most that would be necessary to deorbit the largest concentration of orbital
debris, would require an effective aperture size DVS of 32 meters at l rp wavelength. This is ciearly far
beyond even the largest optical astronomical telescopes being considered today and it would require a
pointing accuracy of at least 30 nanoradians, but such sizes are relatively routine with radio telescopes, the
segmented optics technology exists today to populate such structures for operation at optical frequencies,
and the pointing accuracies are similar to those pursued for the Strategic Defense Initiative. Instead of the
tens of Idlojoules/pulse that might be required with a more conventional telescope, the desired effect could
be obtained with less than 1 kJ pulses from a 50 nsec laser, and this corresponds to the pulse parameters of
the 20 MW induction FEL (I kJ pulses @ 20 kHz) that was the eady baseline for the SELENE system and for
which the solid-state accelerator modules are already in operation at Science Research Laboratory in
Somerville MA. Note that the 20 MW figure is for compadson only, and an operational ORION system
using either an FEL or a glass laser could operate at far smaller PRF and power level with those kJ pulses.
For near-term use, that same beam director operating against a target at 500 km would produce only a 2.5
cm spot, but the same impulse could be obtained with only a few tens of joules par pulse.

4. Space Debris Removal - Orbital Considerations

Space debris can be deorbited by using a ground-based laser to selectively apply a velocity increment to
increase ellipticlty and/or to decrease energy. The reduced perigee altitude in either case will then result in
increased drag and more rapid destructive re-entry. The orbitallresntry aspects of the problem are fully
treated here, emphasizing physical understanding of the behavior rather than actual numerics. A simple
expression for the time required by atmosph_c drag to cause reentry from an arbitrary orbit is first
developed, and the impulsive Av requirements are then defined for most effectively producing reentry.

Orbital Mechani_

The t_o-body orbit problem, including drag D, is described by the equations

Rad/a/force: _rldt z = dv#dt = Ve21r-_r 2 - D/m cos_

and Angular momentum H. d(rve)/dt = - Drlm sin¥,

which may be combined to give

Energy E: d[(Vr2 + Ve2)/2 - ldr]/dt : - Dvrlm and d2(l/r)ld02 = !_-I 2 - l/r.

It follows that the orbital parameters in vacuum (i.e., with D - 0) are given by

E= _--( )' 1*,7== 1 +scose , v== (1+_) ,

where s = (r= - r,)/(r= + r,) is the eccentricity of the orbit.

-. &V

D

T= 2_

Atmospheric drag produces azimuthal deceleration that first reduces orbital ellipticity, and then causes the
debris particle to slowly spiral inwards towards the earth until the rapidly rising density (shown on the next
page) causes it to precipitously lose altitude and self-destruct. Transforming to e as the independent
vadable for convenience, the reentry trajectory is described by the coupled differential equations
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d2(l/r)/de = = p]l-I2 - l/r and

The first equation remains unchanged from the vacuum
case, and the second describes the rate of change of
angular momentum H where the drag coefficient Co =
2D/pv 2 for hypersonic flight is nearly a constant with the
Newtonian value 2.

The drag is localized near perigee for an initial
highly-elliptical orbit, and this essentially produces a
negative tangential Av with no change of perigee, each
ensuing orbit having decreased ellipticity until a circular
condition is reached with nearly the original perigee
altitude. Assuming an exponential density variation which
the data shows is appropriate at high altitudes, the
change in angular momentum per orbit during the eady
stages where integrated drag is the least and most of the
time is spent is given approximately by

dH/d0 = - pCoA/2m r2v.
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using the orbital period T, so, if the time spent near final circularization is small, we find the time _ to reach
that condition to be given by

i" _d_ = _.e_+..-
mr. vz=

in the other limit of nearly circular orbits, the equations reduce to

H2 _ 1 drr=_ and _ =- dH 1 dr _=-_ = _

so that the reentry time t is given by

_dr _p_r
r., r.,

and is again inversely proportional to the density in the initial circular orbit and to the ballistic coefficient
CoNm.

NASA has calculated the lifetime for reentry for a variety of debris objects beginning in circular orbit, and
the results are shown on the next page at the upper left (Ref: "Orbital Debris, A Technical Assessment',
National Research Council, National Academy Press, 1995.) The data for all of the curves has been
replotted beside it in terms of the parameter Adm, and it is clear that the form accurately represents the
results over the entire range, and that the results closely track the density data as predicted by the simplified
model.
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A unified picture of the reentry behavior for arbitrary initial
conditions has been obtained by numerical integrating the
differential equations using Mathematica and an exponential
atmosphere with a constant scale height L, and representative
results are shown at the
dght. As should be lz0

expected, highly elliptical orbits first show a decay of apogee 11s_0
altitude with fixed perigee, followed by an increasingly rapid _ ;05
decrease of perigee to an abrupt reentry. It was found that both the _00,
computational time and the memory requirements increased 9_
dramatically for "small" values of the drag parameter pCDAL/m and 90
that the author's 100 MHZ Pentium Mowed to a halt for values of
tV(prJL 4) larger than about 107; those limiting drag values tended to
be considerably higher than those of practical interest, but it was
also found that the "final" conditions corresponded to many
hundreds of orbits and that the results essentially reached
asymptotic values of interest. The integration routine uses a zoz
vadable step size to optimize accuracy and speed, and the quoted 100
termination conditions reported by Mathematica when the step size _..
essentially vanishes are therefore useful measures of the lifetimes

98

with low drag. Those are shown below for the lowest calculated 97
drag conditions, and it is clear that the results am quite well
cor ated by

me_/_.t--1 +_/-2(i_ .

,,,,_-
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This simple summation 10o
of the circular and 90
elliptical limits exactly
matches the result ,_. 96
given previously for ,4
circular orbits, but the
elliptical term, though
matching the slope, is
18% less than that

100

0.02 0.04 0.06 0.08 0.1 0.12

calculated before (due probably to the rather liberal
mathematical approximations that were made there.) The full
effect of el,li_iclty is just to multiply the lifetime by the factor
l+V2(sro/l_) , and the consequence of doing so is shown on the
next page. The results appear to agree well with those of KJng-
Hele.
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It is interesting to note from an operational viewpoint that, while the greatest concentration of debris is known
to be located 800 - 1200 km above the Earth's surface, the lifetime of that material - which is relatively
difficult to reach with a ground-based laser - is 102 - 10_ longer than that of debris in the region near the
400+ km attitude of the high-value International Space Station Alpha.
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Lif_ime Reduction

Pulses from a ground-based laser can effectively reduce the lifetime of a debris particle in space by ejecting
a small amount of mass, partially ionizing it to create a plasma, and then by producing a pressure wave
through absorption in the plasma. The wave forms across the exposed surface of the material, so the
resulting force is normal to that surface. The time-integrated force from a single pulse is an impulse that in
turn translates into a velocity increment, and the gross result for a train of pulses is a series of such Av's that
modify the orbit such that the integrated drag is increased and the particle more quickly reenters. To put
this in perspective, Av scales as C__E/M,so a particle with mass M of I gram receives a Av of only 0.1 mps
from 1 joule of incident energy E at a coupling coefficient Cm of 10 dynes/watt; since typical orbital velocity
in LEO is about 7900 mps, many such pulses will therefore be required to cause a significant change in the
orbit. Although eccentricity and perigee altitude (the two orbital parameters most affecting lifetime) may be
significantly affected during the exposure time, the local velocity and radial distance will change little during
that period, so it is within the spirit of this analysis to treat the total impulse as purely incremental and to
leave higher order effects to computer analysts.

Since each laser pulse effectively produces an incremental velocity which does not affect the local radial
coordinate r but does change the other properties of the appropriate ellipse through that point, it is useful to

describe the orbit in terms of its local velocity components Vr and ve, i.e.

Vr = IEH c sine, rye = H, H2/p.r= 1 + s cose.
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Then, xy x'
tane= _.-_., e=-_/(xa. 1)2+xay _, _= 1+---_' x= vo'_/_ ' Y=V,'_/_ •

where _/pJr, the local circular velocity, is about 7900 mps in low Earth orbit as noted above. The orbital
parameters s, 0, and rJr are plotted below on a "hodograph" plane using normalized velocity components x
and y as coordinates, and an expanded view of that plot about (0, I), more appropriate for neady circular
orbits, is shown on the next page. Note that the 0 and s asymmetries that are evident in the first plot for
large eccentricities essentially vanish in the expanded one where conditions for small s are described wellby

xz1+rJ2cose, y_ssin0, sz=4(x-1)2+y = ' and tang_y/2(x-1).
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Aside from inclination angle, which is neither specified nor required in this two-dimensional analysis, a point
on the hodograph plane is uniquely specified by the radial and azimuthal velocity components and the
range, all of which can he measured or derived with a high-quality radar system, and those in tum (together
with the inclination - that can also be measured) uniquely determine the orbit of the target. The effect of a
velocity increment Av can be graphically represented by drawing its vector with appropriate magnitude and
direction from its point of origin in velocity space, and the head of the vector then defines e, e, and r,Jr for
the new orbit. If the perturbation is truly impulsive, the radius r is unchanged and the new perigee altitude is
given directly.

Curves of constant rD/r in the first hodograph plot have been replaced in the expanded version on the next
page with lifetime profiles based upon the previously derived model and given by

PCoA,j_-r ,r r, e-_(1--_)
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where z is a dimensionless lifetime with its parameters evaluated at the intercept condition, and for which it

is important to understand that it is ratios that are important, not the individual z values themselves.
Lifetime curves in the upper half of the figure correspond to r/L "- 100, while those in the lower half are for

r/L = 70 and 140; they should be understood to be symmetric about the horizontal axis, and are shown9_s

they are simply for clarity. There is relatively little effect of changes of r/L at the right where 0 <
because the altitude there is very nearly that at perigee, but, otherwise, the curves are dramatically

compressed as r/L decreases (meanin_l that lifetime is far more easily reduced.) The much closer spacing
of all sets of lifetime curves for 0 > 9(] fact means that a properly directed Av will be much more effective
there than it will be near perigee, but it should be noted that the anti-azimuthal impulses of greatest benefit

there willbe more difficult to produce with a ground-based laser, and the propagation distances willbe larger
as well. Aside from laser propagation effects, the most effective application of velocity changes for lifetime

reduction will be outwardly normal to the curves of constant t in the hodograph plane. This comssponds in

the physical plane to nearly radially-outward near perigee in the ascending mode to anti-azimuthal near
apogee and then to nearly-radially inward near perigee in the descending mode. The examples shown in

the expanded figure were arbitrarily selected and correspond to equivalent positions in the ascending and
descending modes; the vectors point in the direction of greatest lifetime change, and the light-colored
sectors depict the allowable range of impulse angles for lifetime reduction. The mean impulse for most

debris objects will generally be close to the direction of the laser beam, so the angle _pbetween the impulse
vector and the local radial will be limited as shown by the dark-colored sectors to about :t:75° by atmospheric

effects [as a matter of convenience for use of the graph, the vector lengths and the radii of the light and
dark sectors are respectively 0.05, 0.04, and 0.03 in terms of normalized velocity.]
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It should be clear from the figure that the allowable operating space (the region of overlap of the laser and
lifetime sectors) for small Av vanishes as perigee is approached in the descending mode, that it is
270a1_o> Aal_l>eon_._l_'i'_g__ in tl_e ._ing .mode, and that it only moderately favors the ascending mode for
_.v __u _, _ emaem operabon can be achieved anywhere in the orbit with a sufficiently high
L_v. /he curves mum De mtecpreted carefully, though, because they can be misleading. In particular, while

dO_onsP_,__r__ (rapid ..cha.nges).near apogee might suggest that operation would be favored there,
ul_ances _encl to De the longest because of both the i Ittt,,d,__ a,_,,,_ o,,,_ _ _._,t . . _ a .......... _ 0,...,,: ,o_._

hat larger standoff distances are required because of the reduced effectiveness of a radial Av component.

,,-=_ , suonge= anver on me crmice oTengagement, and croes-range distances, in the likely
event that the laser lies outside the orbital plane, may prove more demanding than will radial/axial Av
considerations (note that a LEO footprint crosses the equator every 1.5/24 = 1/16 rotation -> 2500 kms, and
this can lead to a substantial cross-range distance at interesting latitudes with a highly inclined orbit.)

In view of the need imposed by the search function, atmospheric conditions, etc., to seek =targets of
opportunity" with the ORION mission, it is indeed fortunate that these rules are rather loose - but therQ i_
one that is not. and which ShO_._J!dbe strictly __nl_¢_1:

Avoid any efxgagement that produces a positive axial ztv component,
Le one that acts to accelerate the debris along its path.
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Section I

1.0 Selection of Laser Devices

The primary objective of this task is to survey laser devices and their

associated technologies to determine what lasers might be suitable for use in

clearing orbiting debris from low to medium earth orbit. The U.S. Space

Station is scheduled to be launched into orbit beginning in the next two to

three years. Thousands of pieces of debris from booster upper stages and

defunct satellites pose a potentially serious collision threat to the Space

Station and other operational satellites. A large ground-based high-energy

laser is potentially capable of irradiating these pieces of debris with sufficient

fluence to create enough blow-off impulse to cause the debris to de-orbit.

A high-energy laser must meet many requirements to perform this

mission. Among the most important considered for this task are:

• Beam Propagation - The laser wavelength must have good atmospheric

transmission characteristics, i.e., low absorption. Also, the power density

in the beam for the required overall laser system parameters must be

below the Stimulated Raman Scattering (SRS) and non-linear index of

refraction thresholds. These parameters are determined by the laser

wavelength, pulse energy, pulse length, and beam diameter.

• Average Power - The laser must be capable of producing sufficient

average power to de-orbit a piece of debris in a reasonable time period.

• Single Pulse Energy - Each individual laser pulse must contain sufficient

energy, when coupled with the other system parameters, to ignite a

plasma on the surface of the debris creating thrust fi'om the blow-off.

Preliminary analysis indicates the required single pulse energy will be in

the range of tens of kilojoules. 273



• Pulse Length - Target coupling and atmospheric propagation are highly

dependent on the laser pulse length. Preliminary analysis indicates the

pulse length should be between 100 ps and 100 ns.

• Beam Quality - Focusing on a target up to 2000 km in range with a high

beam intensity requires a near-diffraction limited beam. Of particular

importance is maintah_g beam quality in the repetitively pulsed mode.

• Reliability - This laser will be required to operate with a large duty cycle

every day for several years.

• Existing Technology - By management decree, NASA is not in the

business of developing high energy laser technology. Whatever laser is

chosen to perform this mission, the development and prototyping of the

laser hardware will have to have been accomplished by some organization

other than NASA.

• Available Technology - The laser technology NASA chooses to perform

this mission must be readily available for deployment by NASA. Laser

technology developed in foreign counUies will only be considered ff the

proper business climate exists to allow NASA the opportunity to readily

and reasonably acquire the hardware.

• Adaptive Optics - The compatibility of the laser system with the adaptive

optics is a serious issue. Beam brightness drives the system to shorter

wavelengths while the teclmical difficulty of constnJcting a large adaptive

mirror pushes toward longer wavelengths.
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1.1 Excimer Lasers

The near-ultraviolet wavelengths produced by excimer lasers offer the

possibility of very high brightness laser systems for orbital debris removal.

These lasers have been heavily researched and developed in the U.S. and

other countries. In the U.S., excimer lasers have achieved average powers of

several kilowatts with good beam quality. From the physics learned in these

experiments, there appear to be no issues preventing the scaling of these

average powers to at least the several hundred kilowatt level. Some of the

issues for these lasers are:

• Low Efficiency - Typical efficiencies of excimer lasers falls in the range of

two to four percent.

• Pulse Length - The natural pulse length produced by high energy excimer

lasers is typically in the 500 to 1000 nanosecond region for efficient

operation. Efficiently shortening the pulse length is not practical.

• Electron-Beam Pumping - Only e-beam pumping has been shown to be

scaleable to high energy. E-beam sustained discharge has not been

efficiently scaled to high energy. With e-beam pumping, a serious issue

remains for the lifetime of the foil separating the laser cavity _om the

electron gun.

• Window and Coating Damage Thresholds - For near ultraviolet

wavelengths and nanosecond pulses, the damage thresholds for excimer

laser windows and coatings is generally 0.5 to 2.0 J/cm^2. This makes

long term operation at high power difficult.

• Raman ShiRing - Significant atmospheric scattering at the near ultraviolet

excimer wavelengths necessitatedown shifting slightly into visible

wavelengths for reasonable atmospheric propagation. This is
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• Adaptive

correcting

difficult.

severe.

accomplished in a high pressure hydrogen cell.

wavelength of 351 nm is normally down shifted to 411 nm.

also enhances beam clean-up.

Optics - The short wavelengths of excimer

Large,

The xenon fluoride

This process

lasers makes

for atmospheric turbulence with adaptive optics extremely

Also, the problems of lead angle and isoplanatic angle are

scaleable

constructed m the U.S.

high average power excimer lasers have been

The EMRLD oscillator successfully produced 40 to

50 joules per pulse at 100 Hz at 353 nm with a pulse length of 600 to 700 ns

and a beam quality of 1.3 times diffraction limited. Large single pulse

energies of greater than ten kilojoules have been achieved by lasers such as

the Aurora krypton fluoride laser at Los Alamos National Laboratory.

(Reference 1)

1.2 Neodymium Glass Lasers

These solid state lasers currently produce the highest single pulse

energy with short (nanosecond) pulse length of any laser. Because of this

ability and their relatively short wavelength ( 1 micron), these lasers have

been chosen by several countries around the world for inertial confinement

fusion programs. Consequently, this particular laser technology has been

advanced to one of the highest levels of state-of-the-art of any laser. The

physics of neodymium glass is extremely well known and understood.

The largest single pulse neodymium glass laser in the world, Nova, is

at Lawrence Livermore National Laboratory. This currently operating laser

produces more than 100 kilojoules in one nanosecond at one micron fi'om ten

separate beam lines.
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Also currently operating at Livermore is the Beamlet laser. This laser

is a single beam line prototype of the neodymium glass lasers for the National

Ignition Facility ( NIF ), scheduled to begin construction at Livermore in

1997. This system will consist of 192 separate beam lines based on the

Beamlet prototype.

The Beamlet laser is potentially capable of producing a single laser

pulse with sufficient energy (20 kilojoules) and short pulse length (10 to 40

nanoseconds) to ignite a plasma on a piece of' orbiting debris. However, the

Beamlet laser is only currently configured to be operated at the rate of one

pulse per minute or less. To be of value in removing orbital debris, the

Beamlet laser would need to be pulsed at the rate of approximately one pulse

per second, which is far in excess of its current capability. The primary factor

limiting Beamlet's repetition rate is removing heat fi'om the laser glass slabs.

Another laser currently operating at Livermore ( Reference 2 ) has

achieved significant pulse energies (100 joules) at high repetition rates (6

pulses per second) and is being scaled up (12 pulses per second). The main

feature of applicability to Beamlet from this high repetition rate laser is a

Stimulated Brillouin Scattering (SBS) mirror used in this laser configuration

to generate a phase conjugated beam which cancels out thermal distortions

and allows the system to produce a nearly diffraction limited (1.1-1.15 times

diffxaction limited) beam at the high repetition rates.

If this mirror configuration could be adapted to Beamlet (Reference 3),

and ff the neodymium glass slabs could be adequately cooled, it is quite

possible Beamlet could be modified to perform the mission of orbital debris

removal.
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1.3 Iodine Lasers

Single short (nanosecond) pulse high energy iodine lasers have been

developed in Russia and Germany. Development in the U.S. has been limited

to longer pulses (10 microseconds) at high energy (1 kilejoule). Currently in

the U.S., the largest repetitively pulsed iodine laser has an output of 50 joules

per pulse at a rate of one Hertz ( Reference 4). This laser is currently being

upgraded to 10 Hertz.

The ISKILA-V laser located at Arzamas-16 in Russia was built for

inertial confinement fusion and has 12 amplifier chains. The total energy

output of the system at a wavelength of 1.3 microns is 30 to 40 kilojoules in

0.4 to 2.0 nanoseconds. It was built for single pulse operation and is typically

fired only once per day.

The ASTERIX IV laser located in Garching, Germany has six amplifier

chains with an output of 1 to 2 kilojoules per chain with a pulse length of 0.1

to 4.0 nanoseconds. It also was consuructed for single pulse operation.

1.4 Free Electron Lasers

Free Electron Lasers were first invented in the U.S. approximately 20

years ago. Since then, over two billion dollars has been spent developing

these lasers at a large number of institutions. Yet the highest recorded outpw

of any of these lasers in the U.S. has been only ten watts. However, dae

physics learned during these investigations and experiments ind/ca:_s that

these lasers have the potential for very high average power, high peak power

in the micropulses of induction linear accelerator amplifiers, excellent beam

quality, infinite wavelength tunability, and good efficiency.
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At the Budker Institute of Nuclear Physics in Novosibirsk, Russia, a

large flee electron laser using a radio frequency linear accelerator has been

built. This laser is reported to be capable of producing 10 to 100 kilowatts of

average power in the wavelength region of 6.5 to 13 microns (Reference 5) in

the near future. This laser use a race-track microtron for energy recovery,

giving it a potential efficiency greater than 30 percent. It is designed to

produce 10 to 30 picosecond pulses at a 2 to 45 Megahertz repetition

frequency. This laser offers a high average power with good wavelength

selection. However, a serious question exists concerning the ability of the

micropulses to cumulatively ignite a plasma on a piece of orbiting debris due

to the low energy in the individual micropulses.

1.5 Carbon Monoxide Lasers

Most of the current work in carbon monoxide lasers is taking place in

Japan for industrial applications and in Russia for airborne missions. These

lasers were researched in the U.S. in the "70s but were not pursued because

of strong water vapor absorption of most of the laser lines. The carbon

monoxide laser is the most efficient high energy laser in existence. However,

for efficient operation, it must operate in the cascade mode and lase on most

of its laser lines. This laser produces wavelengths from about 4.8 to 6.0

microns. When line selected to operate only on the lines that transmit well

through the atmosphere at around 4.8 microns, the efficiency drops to a point

that make the laser unattractive for use in the orbital debris removal mission.
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1.6 Carbon Dioxide Lasers

Although there are no

carbon dioxide lasers in the

longer any operationalpulsed high energy

U.S., this laser technology is a very well

developed and mature technology. This laser has high efficiency, relatively

easy to build and operate, and good atmospheric transmission. However, for

the mission of orbital debris removal, which requires the focusing of laser

energy at a distance of over 1000 kilometers, the far infrared wavelengths of

10.6 and 11.2 microns give the carbon dioxide laser a disadvantage of a

factor of more than 100 when compared to neodymium glass with a

wavelength of 1.06 microns. All other factors being equal, a carbon dioxide

laser would require more than 100 times the energy per pulse to create the

equivalent power density on target as a neodymium glass laser.
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Section 2

2.0 Neodymium Glass Laser System Analysis

After reviewing the aforementioned types of lasers and considering all

of the important issues and requirements, the neodymium glass laser appears

to be the most promising caadidate for the orbital debris removal mission.

This section will address some of the issues pertaining to this laser.

2.1 Repetitively Pulsed With SBS Mirror

The major issue for adapting neodymium glass lasers to the orbital

debris removal mission is configuring them for long-term repetitively pulsed

operation while maintaining good beam quality and cooling the laser glass

slabs. These issues are addressed in Reference 2. Figure 1 shows a diagram

of a laser amplifier using an SBS mirror for wavefront control. As long as the

laser glass slab is kept reasonably cool, the SBS mirror will produce a phase

conjugated reflection that will effectively cancel out thermal distortions in the

glass and produce a near diffraction limited laser beam.

Figure 2 indicates the dimensions and layout of the rectangular glass

slab. Figure 3 shows how the glass slab is mounted with the flashlamps and

how the flashlamps and the slab are cooled with water. In this configuration,

the light from the flashlamps must pass through the cooling water before

entering the laser glass slab.

The output wavelength of neodymium glass can be frequency doubled

with high efficiency using KD*P crystals. When implemented at high average

power, the crystals must be cooled as shown in Figure 4.
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Figure 2 intentionally left blank
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2.2 Beamlet Prototype System Design

The most applicable laser for the orbital debris removal mission

currently in existence and in operation today is probably the Beamlet laser at

Lawrence Livermore National Laboratory. A schematic diagram of this laser

is shown in Figure 5 (Reference 6). This laser is a single beam prototype of

the laser chain designed for the NIF. A pulse is injected from a low power

oscillator and a segmented back mirror adaptively adjusts to provide

wavefront con_ol to improve the beam quality.

This laser currently produces 17.3 kilojoules in l0 nanoseconds. This

pulse energy may be increased by adding additional glass slabs and

increasing the pulse length to maintain the peak power at a constant level well

below the damage threshold of the glass surfaces.
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2.3 NIF Laser System Design

The final configuration for a laser beam line of the National Ignition

Facility is shown in Figure 6 (Reference 6). This configuration differs from

Beamlet in that the pulse from the preamplifier is injected at the very

beginning of the booster amplifiers. This allows the back cavity mirror to

adaptively compensate for all the wavefront distortions though the entire

system.

The current NIF design uses a segmented mirror to perform this task

due to the very low planned repetition frequency. For the orbital debris

removal mission, however, with its approximately one hertz repetition rate,

the SBS mirror used in Reference 2 may be able to perform this function

better and produce a higher beam quality.
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2.4 Laser Slab Cooling Designs

A cross section of a disk amplifier in the Nova laser is shown in Figure

7(Reference 7). This diagram shows the location of the flashlamps

surrounding the laser disks. This configuration is conducive to cooling the

flashlamps with water, but not the laser disks. At best, the disks can be

cooled by a slow flow of air through the main housing.

Figure 8 shows a configuration where the disks are cooled by gas

flowing through channels on either side of the disks (Reference 8). A close-

up view of these cooling channels is shown in Figure 9. These channels

direct helium gas over the laser glass slab at a velocity of nearly 100 meters

per second, removing heat and allowing the glass to be rapidly pulsed.
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ABSTRACT

This report considers bistatic surveillance systems that utilize an existing con>

ponent of a communications satellite system. The communications satellite systems
that are considered consist of a ground-based transmitter (the uplink) and one or

more satellites (each with transponders). The surveillance system would detect and

track other space objects. Possible surveillance system architectures include a space-

to-ground system that utilizes the communications satellite as an incidental target

illuminator and a ground-to-ground system that detects targets accidentally illumi-

nated by the uplink. By reciprocity many principles of the space-to-ground system

apply to a ground-to-space surveillance system that utilizes a special ground-based
transmitter and the communications satellite transponder as a relay. This report em-

phasizes a space-to-ground surveillance system employed to detect low-earth-orbit

targets.

Communications satellite transmitters operate at about 70 dB less (equiva-

lent isotropically radiated) average power than the transmitters in most operational

space-surveillance radars, so optimization of the space-to-ground surveillance system

design is important. Various bistatic sensor principles, including forward-scattering

enhancement of target cross section, are discussed in order to develop the intuitively

best bistatic configurations. The detection performance of a bistatic sensor that re-

lies on forward-scattering enhancement of the target cross section exhibits a weak

dependence on parameters such as transmitter power and receiver aperture. The
minimum detectable projected target areas are calculated for a number of hypothet-

ical surveillance systems to illustrate the concepts.

In the near term, surveillance systems capable of detecting and tracking targets

with projected areas of .1 m 2 or more in both low-earth orbit and high-earth orbit

might be an appropriate technical goal. For low-earth-orbit targets the best perfor-

mance might be obtained with a ground-to-ground system that utilizes the satellite

uplink as a target illuminator. For high-earth-orbit targets a space-to-ground system

operated at large bistatic angles might provide the best performance.

This work was sponsored by the National Aeronautics and Space Administra-

tion under Air Force Contract F19628-95-C-0002.
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1. INTRODUCTION

A communications satellite both receives and transmits microwave radiation. These functions

are accomplished by a transponder. The transponder receives the unlinked transmission from the

ground, shifts it to another center frequency and downlinks it back to earth. This report concerns

the question of how we could utilize an existing communications satellite system along with a

specially constructed ground-based component to implement a sensor for the purpose of detecting

and tracking other space objects. The hope is that some economy will be achieved by the dual

usage of parts of the existing communications satellite system. Surveillance radars that make

opportunistic use of e_sting radiation sources have been considered before. Sometimes they are
called parasitic radars (/1], chapter 5).

If a new surveillance system needs to be built and a parasitic radar will do the job, then it

might be cheaper because the transmitter already e_sts. For many years it has also been pointed

out that because a new transmitter is not built, the operation of the parasitic radar cannot be

detected. A new relevant factor follows from the modern need to conserve the radio spectrum.

Independent sensor and communications systems require more bandwidth than a combined system

that can share the spectral allocation. The reasons for revisiting this topic now include the promise

of many new communications satellite systems operating with increased power levels.

Several architectures come to mind. The communications satellite transmission could illu-

minate a target and be scattered to an observer on the ground. The transmission of a special

ground-based transmitter could illuminate a target and be scattered through the communications

satellite transponder back to an observer on the ground. The uplink station transmission from

the ground to the communications satellite could illuminate a target and be scattered back to an

observer on the ground. In the last case the communications satellite is not directly involved. All
of these candidate surveillance systems are worth discussing.

The candidates are all types of bistatic sensor systems. The transmitter and the receiver are
not co-located.

• space to ground The communications satellite transmission scatters from the tar-

get. A special ground-based receiver is built to detect and track the target. The

transmitter is free and an unusual bistatic geometry is realized, but we are stuck

with whatever signal the communications satellite is transmitting.

* ground to space A special ground-based transmitter illuminates the target. Scat-

tered radiation is boosted and relayed back to earth through the communications

satellite's transponder. The communications satellite provides gain and an unusual

bistatic geometry is realized, but the communications satellite's transponder must
be reserved for surveillance use.
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• ground to ground The ground-based transmitter that is providing the uplink to

the communications satellite also illuminates a target. The radiation scatters to a

special ground-based receiver. The transmitter is free.

This report concentrates on the space-to-ground surveillance system, but by a reciprocity principle

most of the results also apply to a ground-to-space surveillance system.

Typical communications satellite transponders have bandwidths of 27 or 36 MHz and achieve

a downlinked power flux of from 10 -16 to 10 -12 W/m 2 on the ground. These transmitters do not

have the characteristics that a designer would choose for a space-based bistatic illuminator [2]. It is

easy to argue that a surveillance system using a communications satellite transponder as the trans-

mitter of a bistatic sensor to detect and track space objects would have to be carefully designed. If

we were to place a modern space-surveillance radar transmitter from a ground system into geosyn-

chronous orbit and operate it, it might place a power flux of 10 -.5 W/m 2 on the ground. Inevitably

orbiting transmitters are radiating less power than an operational radar sp_e-surveillance system

typically utilizes. In fact, partly because space-based transmitters are more expensive than equiva-

lent ground-based transmitters, the uplink transmitter in a typical communications satellite system

is the most powerful transmitter in the system. Thus as the surveillance sensor model is developed

in this report, various principles to optimize detection performance are uncovered and exploited.

Some of these principles cannot be utilized by space surveillance systems without a space-based

component. To our advantage, the power fluxes from communications satellite transmitters are

larger than those produced by radio stars and the sun, two other microwave sources that have been

studied as illuminators [3].

The main part of the report is found in the next section, where various tradeoffs in the

surveillance system design are discussed. To validate some of the tradeoff principles an additional

section is provided that includes performance curves. The report ends with a section of results

and conclusions. Many relevant principles are collected together, and the detection performance

of candidate surveillance systems are briefly evaluated so that this document will provide a useful

reference.
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2. SURVEILLANCE SYSTEM MODELING AND OPTIMIZATION

The first two sections of this part of the report involve manipulating tile surveillance geometry

in order to maximize the power flux at the observer. The assumption is that a larger power flux

is better. More complex optimization principles require a detection model which is introduced in

section 2.3. The detection model suggests that the time-bandwidth product of the surveillance

system should be minimized which leads to the correlation receiver proposed in section 2.4. To

implement a correlation receiver it is necessary to separate the receiver signal component due to

the transmitter from the signal component due to target scatter. This separation is accomplished

with the angular resolution of an antenna array described in section 2.5. Another result from the

detection model justifies a particular configuration of the array which is discussed in section 2.6.

The final section of this part of the report takes advantage of the fact that the target may be

illuminated over several receiver antenna beamwidths to suggest methods of improving the detection
performance.

2.1 Tlie Forward-Scattering Effect

One interesting principle behind bistatic sensors is the angle diversitv that can be exploited

by arranging different angles between the transmitter, the target and the observer. This angle

is called the bistatic angle. It has been known for some time that under suitable conditions a

target's cross section at a bistatic angle of 180 degrees can be much larger than its cross section at

a bistatic angle of zero degrees. When the bistatic angle is 180 degrees, the target's cross section

is called its forward-scattered cross section and the phenomenon is called forward scattering. The

case of a bistatic angle of zero is the usual back-scattering phenomenon, also called the monostatic

case. Siegel [4] is often credited with showing that the forward-scattered cross section can be much

larger than the monostatic cross section in the high frequency limit although the phenomenon was

apparently described as early as i908 by Mie [.5].

The far forward-scattered field can be thought of as a diffraction phenomenon. It is pointed

out in ([6], page 25.18) that by application of a diffraction principle (Babinet's principle) the target

may be absorbing or conducting and in either case will produce a forward-scattered diffraction

pattern. [n [7] Glaser further argues that the behavior of the cross section near a bistatic angle

of 180 degrees can be approximated by treating the projected area of the target as a uniformly

illuminated aperture in an infinite plane. We can expect good agreement with these predictions

when the size of the target is many times the wavelength of the radiation and the bistatic angle is

very near 180 degrees. In this case, the forward-scattered cross section _r/ is given by

4_rA 2
(7/=

,_2 (1)
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where A is the projected area of the target onto the plane normal to the line-of-sight, and ,_ is

the wavelength of the radiation. Tile forward-scattered cross section fails from its peak value of

crf as tile bistatic angle becomes less than 180 degrees. Tile angular distance to the first null is

appro_mately A/d where d is the apparent extent of the target silhouette as measured in tile plane

of the angle.

The geometry is illustrated in figure 1. For concreteness, tile values for a 20 cm diameter

sphere illuminated by 20 GHz radiation are included as all example. If we specify" that the target

is a sphere then we also know its monostatic cross section. The ratio

= (2)
O'm

is the ratio of the forward-scattered cross section to the monostatic cross section for a sphere of

diameter d illuminated by radiation of wavelength ,\. This ratio quantifies the forward-scattering

enhancement. For the 20 cm sphere and 20 Gliz illumination the ratio is over 1000.

In figure :2, the value of 101og(a_/er,n) is plotted versus d/A. The amount of forward-scattering

enhancement increases with increasing d/k. There are two ways to increase the ratio d/A. We may

fix k and increase d. This says that larger targets benefit from more enhancement than small targets,

a fact that is not particularly useful from a surveillance system design point of view. We would

prefer that small targets with a small monostatic cross section receive most of the enhancement so

that they are easier to detect. We can fix d and decrease A, or increase the frequency of illumination,

to increase the forward scattering enhancement. We have stumbled on the first useful tradeoff in

a surveillance system that uses forward scattered radiation to detect a target. We will expect the

surveillance system performance to increase as the frequency of illumination is increased. This will

be verified through the system model later.

Even though equation 2 is specifically for a sphere and utilizes an expression that is only

valid when d >> A, it correctly describes the qualitative effects of the phenomenon for other target

shapes and smaller targets. Generally as a target's size decreases relative to the wavelength of the

illuminating radiation, the forward-scattering enhancement becomes less pronounced. _Ve need to

keep the frequency of the illuminating radiation as large as we can to get an effective surveillamce

system.

The large forward-scattered cross sections exhibited by targets is a phenomenon that is too

useful to ignore. We will explore geometries where the bistatic angle is nearly 180 degrees, expecting

that this will result in a surveillance system with better detection performance against the target.

2.2 Power Flow and Geometry

We first compare the power flux that is available as bistatic scattering from a target with the

power flux available through a clear reference path to the transmitter. In figure 3 the two paths

are illustrated.
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A reference power flux p_ seen by an observer at a distance R from a source with an equivalent

isotropic radiation power (EIRP) W is

W (3)

p_- 4_rR 2-

The length of the reference path has been set equal to the total path length from the transmitter

through the target to the observer. Thus the only difference between the two paths is due to the

insertion of the target. The distance of the target from the observer is Ro = cR where c takes a

value between 0 and 1. The target has a cross section of a]. Then the power flux pt seen by the

observer due only to the scattering effect of the target is

w
4,x(l_c)2R 2o'f _ Wo'¢ (4)

Pt - 4_c2R2 (4_r)2(1 _ c)2c2R4

The reader might wish to imagine that the target has been slightly displaced from the line-of-

sight between the transmitter and the observer, and that the observer has enough angular resolution

to observe the power scattered from the target independently of the power received directly from

the transmitter. In this case the total path length through the target is longer than the reference

path length and equation 4 becomes a lower bound on the true value.

The ratio

(5)P_Z=

I)_ 4_(1 - c)2c2R 2

is an indication of the power flux through the target path relative to a clear reference path in terms

of the fractional height c of the target. We can think of this ratio as the penalty (or advantage) of

attempting to receive the radiation through a target path instead of the clear reference path. In

terms of the absolute target height Ro equation 5 becomes

Figure 4 shows graphs of lOlog(pt/p_) for af = 1 as a function of c for LEO and GEO

transmitters, and as a function of the transmitter height for a LEO target. The observer is on the

ground. Note that the power flux scattered by the target is more than 100 dB below that which

is received directly from the transmitter source. If targets with cross sections less than one square

meter are considered then an additional attenuation occurs. For targets with one square centimeter

of cross section the curves are 40 dB lower. Only values of c such that .1 < c < .9 are considered,
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because the isotropic radiation model used to obtain equations 3, 4, 5 and 6 is not valid very close

to the antennas.

We have discovered a second important set of surveillance system performance factors. These

factors are due to path length geometry. First, the relative losses through the target path can

be reduced bv observing a target near the transmitter or near the observer. The greatest relative

loss occurs when the target is midway between the transmitter and the observer. The second

consequence is even more interesting. Suppose that a geosynchronous transmitter and a near-earth

transmitter were designed to place the same power flux at the ground level. This is reasonable if the

transmissions are to be received by ground stations of similar size and cost. Let the target height be

fixed. Figure 4 illustrates that the signal through the target path originating from the near-earth

transmitter will be stronger even though the signals received directly from the two transmitters

are of the same strength! The relative loss is a monotonic function of the transmitter altitude even

though transmission power is varied to keep the direct power flux on the ground constant.

Can we design a receiver to detect the power scattered from the target? We might imagine

that a receiver designed to receive the original direct communications satellite transmission would

not be able to perform its communication function using a signal source that is 100 dB below the

design point. The original communications satellite receiver was designed not only to detect the

signal, but to demodulate the encoded data component which might represent a symbol rate of
from several thousand to many million symbols per second. We only wish to detect the presence

of the scatter from the target and, theoretically at least, we have all of the time that the target is

visible to do it! In that sense our job is easier, but 100 dB is a large amount of loss to recover. We

will need a detection model to see what really happens.

In addition, equations 5 and 6 reminds us that a large dynamic range is involved in any

surveillance system that we build. When a microwave or laser radar is designed, the transmitter is

almost inevitably constrained to release its energy in timed pulses. When the relatively powerful

transmitter is not radiating, the receiver listens for the weak scattered return from the target. The

communications satellite transmitter is a continuous-time radiator. If the communications satellite

is used as a transmitter, then the radiation scattered from the target and the direct transmitter

radiation fall on the observer simultaneously. The original transmission jams reception of the target

scatter!

In this section we have discovered some geometric principles that can be used to increase the

power flux on the ground due to the target scatter. Intuitively this could improve performance, but

there are other issues to consider. Certainly the length of time that the target is illuminated by the

transmitter may affect performance also. To be precise about the surveillance system's detection

performance we will need a detection model. We must also remember that the assumptions of

lossless processing used in the remainder of the report may not account for the difficulties that a

practical design will face in the presence of the large dynamic signal range that we have documented

in this section.
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2.3 The Detection Model

In this section we discuss the detector. Because we would like to expose the tradeoffs among
the receiver processing options that affect the time-bandwidth product characterization of the

surveillance system, a simple energy detection, or radiometric, model is used. The principal pa-

rameterizations of this model are the signal energy, the noise power spectral density, the bandwidth

and the observation time. It is true that additional assumptions regarding the characterization of

the signal component can be used to predict better performance. For example, specific stochastic

fluctuation models for target modulation could replace our bandwidth characterization. But the

additional assumptions would have to be justified, and the resulting performance improvement

would not change our conclusions about the suitability of the surveillance system for any purpose

([8], pages 101-106). The loss of generality that results from using specialized and incomparable de-

tection models would also make it difficult to develop an intuitive understanding of the surveillance

system tradeoffs that point us toward the best possible architecture for a particular application.

The detection problem consists of deciding between the following two hypotheses.

• Hypothesis H0: Only noise is present at the detector input.

• Hypothesis Hi: Both signal and noise are present at the detector input.

The detector model is shown in figure 5. We make the usual assumption that the noise appears

to come from an additive zero-mean Gaussian source. An early reference for the application of the

model to the detection of deterministic signals is found in [9], while a more recent treatment can be

found in [10], section 4.3. The following facts about the detector are taken from those references.

Suppose the input value is zero before time t = 0 and the detector bandwidth is B. When

the detector is appropriately implemented, its output at some time t = T is a chi-squared random

variable whose degree of freedom is equal to twice the time-bandwidth product, or 2TB. Under

hypothesis H0 the distribution is central, and under hypothesis H1 the distribution has a non-

centrality parameter value equal to the in-band signal energy E divided by the noise power spectral
density no. Specifically,

Ho :y(t) ,,, X_(0, 2TB) and H1 :y(t) ,_ )c2(----E,2TB). (7)
no

In order to apply the output of the detector to the problem of deciding between H0 and

H1 at time T, we compare the value y(T) to a threshold. If y(T) exceeds the threshold, then
we declare H1 to be true. Otherwise H0 is assumed to be correct. This method is a standard

one-sided binary hypothesis test. The threshold is chosen so that the probability of false alarm

p/ (the probability of incorrectly choosing Hi as true) is a small value. Then the probability of

detection Pd (the probability of correctly choosing H1 as true) is determined by the value of the

non-centrality paramete r E/no. All of these probabilities can be obtained from the distributions 7.

It will be convenient to write E/no as
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E ptA_Td

"o no (8)

where Pt is the power flux given by equation 4 due to target scattering that is seen by the observer.

.4e is the observer's effective (antenna) aperture, and the signal energy is collected over a time

duration Ta. Note that the time-b_.ndwidth product TB that determines the distribution of y(T)

is characterized by a time T which represents the detector's time interval of operation. The value
T_ may be less than or equal to T.

Changes in various scenario parameters will be studied in the remainder of the report. The

effects on detection performance can be interpreted by understanding a few basic performance

tradeoffs that are determined by the properties of the distributions 7 through manipulation of their

parameters, the signal-to-noise ratio E/no and the time-bandwidth product TB. For the best

detection performance we want the probability of detection p4 to be as large as possible for a small
given probability of false alarm Pl.

Performance improves when the signal-to-noise ratio is increased. In terms of our model, the

signal-to-noise ratio can be increased by increasing the amount of signal energy collected (increas-
ing the numerator of the right-hand side of equation 8), or by decreasing the value of the noise

power spectral density u0 (decreasing the denominator of the right-hand side of equation 8). Few

readers would find this counter-intuitive. Less often considered is the fact that the detection per-

formance can be improved by decreasing the time-bandwidth product. This feature of the problem
is numerically illustrated in figure 6.

Figure 6 shows the probabihty of detection as a function of the time-bandwidth product for
fixed values of the signal-to-noise ratio and the probability of false alarm. An increase in the time-

bandwidth product increases the total noise energy, given by the product TBno. If not offset by
an increase in signal-to-noise ratio, detection performance suffers.

On the other hand, if T = Td and the time-bandwidth product is increased by increasing the
value of T, then the signal-to-noise ratio is also increased through equation 8. In this case some

improvement in detection performance is observed. The greatest performance increase is obtained

when the signal-to-noise ratio is increased by increasing Ta = Twhile keeping the time-bandwidth

product fixed. This can be done provided that the bandwidth B is reduced accordingly. When

the signal is a constant of duration Td, its bandwidth is approximately B = 1/Td, so that the

time-bandwidth product TB remains unity as Ta increases with T = Td.

A typical communications satellite transponder has a significant bandwidth, and although it

is possible theoretically to directly apply the detection model to such signals, the large detection

bandwidths would provide the worst performance of all reasonable surveillance systems. The com-

munications satelhte transponder signal has a constant amplitude, or envelope, by design so that

it is possible to implement a correlation type of receiver designed to recover the constant envelope

of the signal. This constant envelope can be applied to a detector with an ideal time-bandwidth

value of unity. In reality the envelope will be modulated by target cross-section fluctuations due
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to the changing aspect of a rotating target and the slowly changing observation geometry, but this
should be limited to a few hundred Hertz at worst.

For these reasons, only correlation receivers are considered in the remainder of the report.

Other minimal time-bandwidth receiver implementations may be possible, but their detection per-
formance cannot be significantly better. Tile scenario parameterization changes are limited to those
that affect the signal-to-noise ratio.

2.4 The Correlation Receiver

Figure 6 shows us the folly of contemplating any large-bandwidth sensor svstem. Generally we

must tolerate any envelope bandwidth that is due to the target cross-section fluctuation. Depen(iing
on the scattering properties of the target and changes in geometry the bandwidth could be 100 Hz

or so, and quickly dominate the bandwidth due to the signal duration. The bandwidth due to the

signal duration is roughly the reciprocal of the time that the target spends in the detection cell,

so the smallest time-bandwidth product is unity. At all costs we must avoid the communications

satellite system's modulation bandwidth which is typically 27 or 36 MHz. The time-bandwidth

product can only approach unity if there is no target cross-section fluctuation because, in this

case, the signal bandwidth is approximately the reciprocal of the signal duration. Thus the next

principle that we employ to improve the surveillance system detection performance is to compress
the available signal energy into the smallest possible bandwidth.

The principles of the correlation receiver are illustrated in figure 7. Assume that the signal

due to direct transmission from the satellite transmitter and the signal due to target scatter can

be separated in the receiver. A principle of separation will be discussed in section 2.5. The direct

transmission from the communications satellite is received with a large signal-to-noise ratio and

can presumably be recovered almost exactly. If it is appropriately delayed to account for path

length difference and mixed with the signal component due to the target scatter, the envelope

modulation of the resulting signal will be due to the target cross-section fluctuation. The resulting
low-bandwidth signal can be applied to the radiation detection model.

The relative delay between the signal components due to target scatter and the direct trans-

mission is due to the path length difference. Presumably we know where the transmitter is, so the

path length through the target can be estimated, placing the target somewhere on an ellipsoid.

With an estimate of the direction to the target intersecting the ellipsoid the target's position in
three-dimensional space has actually been estimated.

2.5 The Antenna Array

In order to implement the correlation receiver we need to isolate the signal due to the trans-

mitter from the signal due to target scatter. It has already been pointed out that when the commu-

nications satellite is used as the surveillance system transmitter, the radiation from the transmitter

and the scattered radiation from the target will fall on the observer simultaneouslv. They do not

result in identical signal components, but the radiation from both sources are continuous. _Thus we
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Figure 7. The signal receit, ed directly from the transmission source, which is resolved

from the target i_t angle, is reconstructed, delayed and used to recover the envelope of the

signal due to target scatter. The resulting relatively low-bandwidth signal is applied to the

energy detector.

cannot trivially separate the signal due to target scattering from the signal due to the transmitter

by time demultiple_ng, as we would do in an active sensor with a transmitter that releases its

energy in discrete pulses.

Can the two signals be separated in frequency by a simple bandpass filter? The signal due

to target scattering will be Doppler shifted relative to the signal associated with the transmitting

source. It is difficult to imagine cases where the Doppler shift will exceed .01% of the center radiation

frequency and typically it will be much less. Because the transmission sources are communications

devices carrying information, their radiation ban'dwidths exceed the expected Doppler shifts by

a fair margin. The spectra of the transmission source radiation and the target scatter will be

overlapped so we cannot separate the signal due to target scattering from the signal due to the

transmitter by simple frequency demultiplexing with bandpass filters.

Angle demultiplexing remains a possibility. We have already established that the target and

the transmitter as seen by the observer can be separated as much as a few degrees without seriously

reducing the forward-scattering enhancement. Therefore we assume that the surveillance system

employs a principle that allows the various radiation sources to be separated in angle. An antenna.

or an array of antennas, with sufficient physical extent to provide the required angle resolution would

suffice. We will assume a multiple element array, because it includes a single element antenna as a

special case.
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By reciprocity the array might be part of the transmitter or the receiver. The advantage of a

ground-based transmitter and array clearly resides in the fact that the transmission waveform can

be designed. In this case, the ground-based transmission scatters from the target to the commu-

nications satellite and is relayed back to earth through the satellite's transponder. Ground-based

transmitters somewhat more powerful than the communications satellite transmitter can be easily

built at low cost. The ground-based bistatic transmitter-can still be less powerful than a conven-

tional monostatic transmitter because of the forward-scattering enhancement. The disadvantage of

the ground-based transmitter lies in the fact that a transponder would need to be reserved for the

exclusive use of the space surveillance system. In the remainder of this section the space-to-ground

option is assumed. The emphasis is also on the detection of LEO targets.

A conceptualized antenna array is shown in figure 8. There are N 2 parabolic elements in the

l-- ?'-_ /_<' ___ ('-_

',_ \j _<f
L -_--_" M_g

(

.- _. j t,....j, t .

L

THINNED L BY L ARRAY FILLED L BY L ARRAY

Figure 8. The conceptuall:cd antenna array consists of a square array of parabolic ele-

ments. The best detection performance is obtained when the array is filled.

filled array, each with a physical aperture of rD2/4. Thus the total physical aperture of the filled
array is

Ap-

N2rD 2 rL 2

4 ,I (9)
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where L = ND is the size of the array. Because each side of the array is L units long, the angular

resolution _ of the array is

=2sin- L_A __-'\ (10)
2L L

where A is the radiation wavelength. The approximation in equation 10 is valid for small values of

angle. From aperture sampling theory the unambiguous field-of-view of the array is N& by N&,
and within this field-of-view N 2 distinct beams can be formed in parallel fairly efficiently with, say.

multidimensional fast Fourier processing. When we say that two objects can be resolved in angle

we mean that they are separated in angle enough to be observed in the main lobe of distinct beams,

a value of approximately at least &.

Notice that the number of antenna elements N and their diameter D have dropped out of

equations 9 and 10. Once we have decided on the type of array that we want to use, then the physical

aperture and the angular resolution depend primarily on the size, or real estate, associated with

the array. In the remainder of the report we will generally tradeoff aperture and angular resolution

in order to investigate the detection performance of a lossless surveillance system. The tracking

performance, the effect of processing losses and the cost of the surveillance system are not analyzed.
These issues would be more directly affected by the tradeoffs between element size and the number

of elements.

If the power flux at the antenna is specified, say in units of W/m 2, then it is tempting to

multiply the power flux times the physical aperture of the antenna to determine the collected

power. Because of losses this is not a good approximation of the collected power. Instead an

effective aperture A_ is used to scale the power flux to obtain collected power. We write

A_ = oAp.
(11)

For a parabolic antenna an efficiency 77of .5 or greater is not uncommon.

Without justification we have completely filled the array with antenna elements that were

placed closely together. We could imagine thinning the array by deleting elements in the interior
of the array, or increasing the separation between antenna elements. In section 2.6 it is shown that

the filled array provides better detection performance.

2.6 Aperture and Detection Time

The product of the effective aperture A_ and the target detection time Td, the aperture-time

product, can be altered by the configuration of the antenna array. We know from section 2.3 and

equation 8 that if we can ma,,dmize this product without adversely affecting the values of other
variables that determine the signal-to-noise ratio and the time-bandwidth product, then we can

improve performance. What array characteristics maximize the aperture-time product, and hence
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improvetarget detectability? In this sectionwe showthat a filled array is associatedwith the
largestaperture-timeproduct.

First weconsiderhowto manipulatethearraycharacteristicsto increaseTd. If we continue to

restrict ourselves to detection of the target within a single beam, then tile detection time is limited

to the time that the target is in the beam. The spot diameter of the beam .s at a range Ro from
the observing array of diameter L is

A

.s = 2Ro tan _- __ RoA (12)

where the resolution A is given by equation 10.

If we assume that a target flies through the center of the spot at velocity v normal to the

line-of-sight from the observer, then the detection time Td is given by

Td = ,s = 2Ro tan A RoA
v v 2 vL (13)

Hence the target detection time depends on the size of the array, and the smaller the array the
longer the detection time.

Then how can we maximize the effective aperture A_ for an array of a given size? Within the

context of our simple array of parabolic elements, we obtain the ma_mum effective aperture by
completely filling the array, placing the elements as closely as possible. We would not want to thin

the array, because any such configuration leads to an array with a smaller aperture-time product.
The analogy holds with other array element types.

Thus it seems clear that if we wish to increase the size of the array, then in order to maintain

the largest possible aperture-time product we must add elements to the array as it grows, keeping
it filled. If we want to reduce the number of elements in the array, then in order to maintain the

largest possible aperture-time product we must decrease the size of the array, keeping it filled.

We can now consider how the aperture-time product changes as the filled array grows. Closer
examination of equations 9, 11, and 13 reveals that

qlr L RoA
A.Td

4v (14)

so that the aperture-time product grows about linearly with the array size L. This is less than

the quadratic growth of the aperture alone because target detection time is decreasing. The conse-

quence is that the detection performance does not grow as fast with increasing array size as in the
monostatic surveillance case.
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We haveusedthe detectionmodelto justify the previousdecisionin section2.5to fill the
antennaarray. In generalwewill want an arraywith the largest possibleeffectiveaperturefor
its physicalsize.Thus anotherprinciple that wewill apply to the surveillancesystemill orderto
improveits detectionperformancewill beto useantennaarraysassociatedwith largeaperture-time
products.

2.7 Trajectory-Based Predetection Processing

Oncewehavemaximizedthedetectionperformancefor atargetpassingthroughasinglearray
beam,wewishto considerhowtheresultsareextendedto multiple arraybeams-- a super-beam.
Supposethat the surveillancesystem,whenattemptingto detecta targetpassingthroughasingle
beam,processesk independent detection tests per unit time. With a probability pi of a false alarm

from each test, the expected number of false alarms /71 for the single beam detection system in T

time units is

F1 = pykT.
(15)

Now suppose that j possible target trajectories, each traversing exactly m array beams are

postulated. For the trajectory that actually corresponds to the target motion, the duration of the

signal becomes approximately mTd, ignoring the fact that the target actually dwells a different
time in each beam. The time Ta is the target dwell time in a single beam. Then the signal-to-noise

ratio E/no becomes

E ptA_mTd (16)

no //0

an improvement in the signal-to-noise ratio by a factor of m over the single-beam case. If we

continue to assume that T = Td and that B = 1/T then the time-bandwidth product remains at

unity and the improvement in signal-to-noise ratio will directly improve the surveillance system

detection performance.

Note however that the surveillance system is presumably now performing jk detection tests

per unit time, so that the expected number of false alarms F,_ for the m beam trajectory case

becomes more like

Fm= pljkT,
(17)

ignoring the fact that the trajectories may not be completely independent. To keep the expected
number of false alarms per unit time constant, the detection threshold could be adjusted so that

the probability of false alarm is reduced to Pl/J and part of the benefit of the increased signal-
to-noise ratio would be lost. Overall detection performance will still improve as the number of
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beamsprocessedbeforedetectionis increased,providedj is not too large. Another approach is

to allow the false alarm rate to rise, at least a bit, and employ postdetection data processing to

eliminate most of the false alarms. Our final principle for improving the detection performance of

the surveillance system is therefore the application of trajectory-based predetection processing.
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3. SURVEILLANCE SYSTEM PERFORMANCE

The modelling elements of the previous section may be combined to solve for the minimum

detectable projected target area. Assume that

pt is the power flux that the target scatters onto the observer.

pT is the power flux that the illuminator could place directly on the observer,

Ri is the distance from the illuminator to the target,

Ro is the distance from the observer to the target,

Rr is the distance from the observer to the illuminator,

is the cross section of the target,

z is the signal-to-noise ratio E/no,

K is the Boltzmann constant, and

Ts is the characteristic temperature of the receiver.

Now using an isotropic scattering model as in equations 3 and 4 it is possible to write

(18)
Pt-- _ 2

4,, R i Rg

so that

Equation 19 is valid for any bistatic angle. In most cases we are interested in the minimum

detectable projected target area for bistatic angles near 180 degrees. This vMue is obtained by

setting a I equal to the value of a obtained from equation 19 and solving equation 1 for A. In this

case we also set Rr = Ri + Ro and obtain

R, Ro,_ p_ (20)A - Ri + Ro

By definition of the receiver system temperature

no = K Ts ,
(21)
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and from equation 16

Pt
2no

.4emTd" (22)

With substitutions from equations 9, 11, 13, 22 and 21 it is possible to obtain the minimum

detectable target cross section from equation 19 or the minimum detectable projected target area

from equation 20. The value of z used should be the one that provides the smallest acceptable
probability of detection for a given rate of false alarm.

The graphs in this section are obtained with the exact forms of equations 10. 12 and 13.

but the small angle approximations available for those equations yield a simple appro.,dmation for
equations 19 and 20. We obtain

and

o--_16 RoKr,:v
Rr / r?LprmA (23)

Ri , / RoKT, zv)_
A_-2Ri + RoV _ • (24)

We recall that

A is the radiation wavelength,

r/ is the antenna efficiency,

L is the size of the L by L antenna array,

rn is the number of array beams processed for detection, and

v is the velocity of the target through the beam center and normal to the observation bore-
sight.

From equation 24 it is easy to see the approximate dependency of the minimum detectable projected

target area on most of the variables. In most cases there is an inverse square-root dependence. Only
the dependence on distances remains a bit obscure.

3.1 The Baseline System

We will vary the parameters that characterize the surveillance system, but we wish to specify

a baseline system that will be used as a design reference point. The approach throughout has
been to use simple enough assumptions that the basic principles that determine the surveillance

system performance can be studied, and the tradeoffs understood. The numerical predictions of
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performance will inevitably appear to be a lower bound, but our goal is to be correct within a factor

of two or three in calculating a minimum detectable projected target area under various conditions.

RECEIVER

• lossless single-beam processing

• from l: by 1 meter to 100 by 100 meter antenna array

• signal-to-noise ratio z of 10

• time-bandwidth product of unity

• antenna efficiency r/of .5

• system temperature T, of 100 degrees Kelvin

• boresight elevation of about 90 degrees

TARGET

• 500 km height

• 7 km/s velocity normal to boresight

• bistatic angle nearly 180 degrees

TRANSMITTER

• 800 km height

• 20 GHz carrier frequency

• 10-12 W/m 2 on the ground

• illuminates target as necessary

The baseline surveillance system is a LEO system, looking at LEO targets between the trans-

mitter and the receiver at bistatic angles of about 180 degrees. The bistatic angle is assumed to be

so large that the maximum forward-scattered cross-section enhancement is obtained.

The transmitter is at 800 km altitude and places 10-12 W/m 2 on the ground. Although

many existing communications satellite systems produce lower flux levels, some produce more. We

assume that whenever the target is within the beam of the receiving antenna, the target is being

illuminated by the transmitter. This requires at least some good operational procedures, and in

some cases the antenna pattern of the transmitter may not be adequate. However, communications

satellites usually have the smallest antennas, and hence the widest beams, making it easier to satisfy

this assumption than if orbiting antennas were as large as communications engineers would like.

The baseline target is at 500 km altitude. Its projected area is unspecified. We will calculate

the minimum value of the projected area in order to achieve at least 10 dB signal-to-noise ratio as

various parameters are varied. It is unlikely that a target will be traveling exactly 7 km/s through
the center of the receiver's antenna beam, yet this is what we assume. Some targets will be moving
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faster, some slower, because the receiver is presumably tracking the transmitter. It could be easier

to detect targets moving almost parallel to the transmitter because their relative velocity through
the moving beam will be slower than ;" km/s.

Processing in the receiver is assumed to be lossless, and so the minimum detectable projected

target area that we calculate will be a goal, rather than a guarantee. The antenna array size is

varied in each performance graph from 1 to 100 meters, the latter size being exceptionally large.

At the projected target areas that we calculate, barely 10 dB signal-to-noise ratio is achieved. In

reality most operational surveillance systems operate at larger values. Referring to figure 6 we

see that for the probabilities of false alarm and target detection to be at all reasonable at this

signal-to-noise ratio, we must assume a time-bandwidth product of unity. Commonly the target

would be said to be coherent. Antenna efficiency and system noise temperature at the surveillance

system frequency of 20 GHz are slightly optimistic also, at .5 and 100 degrees Kelvin respectively.

3.2 Parametric System Performance

Here we consider, numerically, tradeoffs in simple surveillance system parameters. The pa-
rameters varied are of physical interest at the system level. Their variation affects the detection

performance through the signal-to-noise ratio and the time-bandwidth product as detailed in sec-

tion 2. Although in most cases we have already argued what the effect of each variation will be, it is

important to test those arguments with the numerical model. For example, we know from figure 4

that moving the transmitter of a surveillance system with a fixed power flux at the ground level

from LEO to GEO will increase the losses through the target path relative to a clear reference path.

But the receiver antenna beam is wider at high altitude and the HEO target will move through
the beam more slowly than a LEO target, increasing the signal duration available for detection

processing. These are conflicting effects and we will have to apply the full detection model to see
what happens.

In figure 9 the lossless detection performance of the LEO baseline surveillance system is shown.

Our assumptions allow the computation of both a minimum detectable target cross section and

a minimum detectable target projected area. The two quantities are related through the forward

scattering equation 1. The effect of forward scattering is significant unless the projected target areas

are so small that d/_ approaches unity. In the later graphs, when the baseline surveillance system

is compared to other systems, only the minimum detectable target projected areas are graphed as
one baseline variable is changed.

One of the simplest effects to anticipate is that communications satellite systems that place

a larger power flux on the ground will be more effective illuminators for the surveillance system.

The detection performance is shown in figure 10 for three different flux levels. Most of the existing

communications satellite systems place 10-12 W/m 2 or less on the ground. This is the baseline

value. However some existing systems produce larger flux values. Communications satellite systems
that produce larger flux values can provide a more reliable service. The economics of commercial
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mobile communications demand that the number of accidentally terminated services be reduced,

so power fluxes will probably increase in the future.

Equation 2 predicts that increasing the radiation frequency will improve performance. The

effect is shown numerically in figure 11. Communications satellite systems will probably not operate
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Figure 11. In the near term, communications satellite systems with frequencies as high

as 30 GHz may be routinely built.
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muchover30 GHz for the foreseeablefuture. This frequencydoes,lot provide a large advantage

over the baseline assumption of 20 GHz. The advantage of searching for targets near the transmitter

can be seen in figure 12. This effect is predicted by equation 5 which shows that path losses will
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Figure 12. Improved performance is obtained when the target is 50 km from the transmit-

ter instead of 300 kin. Since the bistatic angle is nearly 180 degrees, there is no significant
change in the total propagation path length in the two cases. The transmitter altitude is
800 krn.
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be less when the target is near either the transmitter or the observer. Remember that we have

assumed that the target is illuminated as [ong as necessary for it to pass through the receiver

antenna beam. This assumption may be challenged as the target nears the transmitter. Also if

A

,,<,

0.3

O,, 0.2

rn
<
I-
(.)
LIJ o.1
I--
I.U

=)

Z

\

ALTITUDE

800 km TRANSMITTER ALTITUDE

O , , i i = = , i i i

0 25 50 75 100

ARRAY SIZE (m)

Figure 13. Moving the transmitter from LEO to GEO will decrease the LEO target de-
tection performance, even though the GEO transmitter is assumed to be more powerful

so that it places the same power flux on the ground as the LEO transmitter. The target

altitude ts 500 km.
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we restrict ourselves to targets near the transmitter we will encounter larger processing losses (the

target and the transmitter will be separated less in angle from the observer's viewpoint) and we will

see fewer targets due to the smaller volume of space that is searched. Equation 6 aJso pt'edicts that

a LEO transmitter might be more effective than a GEO transmitter even though both transmitters

put the same power flux on the ground. The effect can be seen in figure 13.

In section 2.7 it was argued that the time for detection could be extended by trajector):-based

processing assumptions. The resulting performance improvement is optimistic because it does not

take into account the false alarm rate which will increase to a new value depending on how the

trajectory assumptions are incorporated into the detection scheme. The scheme is only possible

because, in some cases, the target will be illuminated by the transmitter for a period of time

longer than the time that the target stays in one beamwidth of the receiver antenna. This is not

generally the case for a monostatic sensor with the transmission and reception antenna patterns

nearly identical. The effect is shown in figure 14. Its application might be ultimately limited by
the illumination geometry, or by computational restrictions.

Figure 15 compares several hypothetical surveillance systems. We have discussed a number

of bistatic sensor optimization principles. It is interesting to see what happens in the following

surveillance systems as many of the variables are changed together from one system to the next.

W'e have already discussed the baseline surveillance system, which uses a LEO transmitter radiating

10-12 W/m 2 onto the ground from 800 km altitude. The target passes through a single beamwidth
of the receiver antenna at 500 km altitude and at 7 km/s.

The Advanced Communications Technology Satellite (ACTS) is an unusually powerful com-

munications satellite (60 dBW EIRP) in GEO. The ACTS satellite can put more than 10 -11 W/m 2

on the ground. Because of its greater power and the fact that HEO targets can be expected to spend

a longer time in the receiver antenna beamwidth than a LEO target, the ACTS might be used to

detect ttEO targets smaller than the LEO targets detectable by the baseline surveillance system.

These additional factors governing the ACTS scenario overcome the tendency of a LEO surveillance

system to perform more poorly as the transmitter altitude is raised. The target is 5000 km from

the communications satellite transmitter that is at 38500 km altitude and the target is assumed to

be traveling at 3 km/s through the receiver antenna beam. The frequency of operation is the same
as the baseline 20 GHz.

The U.S. NAVSTAR GPS and the Russian GLONASS satellites have been considered as

illuminators for an air-defense system, for example in [11]. These satellites have similar attributes

as illuminators. They orbit at about 20,000 km altitude, radiate from about 1200 MHz to 1600 MHz,

and place about 10 -le W/m 2 at ground level. The increased altitude, lower frequencies, lower flux

levels and change in the fractional height of the LEO target are all disadvantages compared to

the baseline system. The GPS and GLONASS satellites could not be used to detect LEO targets

smaller than about 10 m 2. Used as illuminators for air-defense the fractional height disadvantage

is somewhat mitigated and detection performance improves.
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If future LEO communications satellite place larger power fluxes on the ground at 30 GHz,

they will be more useful for the detection of LEO targets than the baseline surveillance system. The

future LEO surveillance system is illuminating a target 50 km away. a relatively small distance, from

an altitude of S00 km. The proposed communications satellite transmitter can put 10 -1° W/m _"

on the ground. The example further supposes that a target trajectory passing through 10 receiver

beamwidths at 7 km/s was observed and, as ustial, processing was lossless.

The biggest surprise concerns how well the ground-to-ground surveillance system will work

with very low-altitude targets. The uplink transmitter parameters are similar to those found in

[12], section 9.2. The relatively good performance is due to the fact that uplink transmitters for
GEO communications satellites are fairly powerful (75 dBW EIRP) compared to communications

satellite transmitters, and the target is only at a 500 km altitude traveling at 7 km/s. This up[ink

transmitter is assumed to radiate at the baseline frequency value of 20 GHz. Because large bistatic

angles cannot be realized for the ground-to-ground surveillance system, it was assumed that the

target cross section and the projected area of the target are the same in this case. The hypothetical

system does not perform as well as an operational space surveillance radar because the up[ink

transmitter is 30 dB or more less powerful.

Calculations for the latter two surveillance systems yield minimum detectable projected target

areas below .001 m 2. This implies that the characteristic dimension of thesmallest detectable

targets for these surveillance systems are on the order of the radiation wavelength. This represents
a fundamental limit of the modeling ideas employed. We might be suspicious of calculations for

postulated surveillance systems that yield smaller minimum detectable area values unless higher

frequencies were employed.

To obtain sharper results it is necessary to include processing losses for particular imple-

mentations and to include more subtle effects of geometry. We have assumed that the target is

illuminated for as long as it stays in the receiver's antenna beam and that forward-scattering en-

hancement is always available. We have assumed that the target travels through the center of the

beam at 3 km/s in HEO and at 7 km/s in LEO in order to determine the time available for target

detection. Miller [13] has correctly pointed out that the requirement for a large bistatic angle might

determine a different value for the detection time and significantly effect the surveillance coverage

in general.
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4. DISCUSSION

4.1 Summary

We have considered the detection performance of a number of bistatic sensor systems that

ma,ke opportunistic use of existiffg communications satellites. This report has emphasized a space-

to-ground surveillance system that uses an existing communications satellite transmitter to in-

cidentally illuminate a target while the satellite is performing its normal (probably commercial)

communications function. A special receiver would be needed on the ground to complete the surveil-

lance system. State-of-the-art communications satellites put between 10-16 and 10-12 W/m s on

the ground. A space-surveillance radar transmitter, if it could be operated in orbit, could place a

flux of 10 -s W/m s on the ground from GEO. Thus the bistatic surveillance systems under consid-

eration are underpowered by operational radar space-surveillance standards and their design must
be optimized.

Besides utilizing an existing piece of communications equipment, the surveillance concept

also allo4's for a variety of interesting bistatic geometries. As discussed in section 2.1 the largest

target cross section is typically seen at a bistatic angle of 180 degrees. At a bistatic angle of
180 degrees, a 20 cm diameter sphere illuminated at 20 GHz exhibits a cross section that is 32 dB

greater than its monostatic cross section. Similar enhancements are expected for complex targets

of similar size. The enhancement effect is not significant (and the model is not necessarily valid)

unless the ratio d/A is much greater than one, where d is the characteristic dimension of the target
and A is the wavelength of the radiation} The enhancement effect decreases as the size of the

object decreases for a fixed illumination wavelength. Nevertheless, bistatic geometries where the

transmitter, target and observer are nearly colinear can provide a useful cross section advantage.

The enhancement increases with increasing frequency. The enhancement also remains significant

within a few degrees of its maximum for typical targets and illuminating frequencies. The forward-

scattering enhancement effect lead us to consider observation geometries with large bistatic angles.

The power received directly from the transmitter will be more than 100 dB greater than the

scattered power received from the target in all cases of interest. This large dynamic range places
a burden on any processing system that must handle the combined responses from the transmitter

and the target. By analyzing a simple power flow model that assumes only the forward scattering

geometry in section 2.2 we found that the power flux at the observer due to the target scattering is
increased by searching for targets of a given size near the transmission source or near the observer.

Power flux due to target scattering is at a minimum when the target is equidistant from the

transmitter and the observer. Communications satellite systems at various altitudes tend to put

the same power on the ground to provide a constant quality of service for ground stations of fixed

1This restriction actually affects the performance of all microwave sensing systems somehow, and

is not particularly a weakness of the bistatic sensors examined in this report.
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design and size. We found that the ratio of the power received via scattering from the target to

the power received through a clear reference path from the transmitter to the observer increases
as the distance between the observer and the transmitter decreases. Thus, for example, if two

communications satellite systems are designed to put 10-12 W/m 2 on the ground, one operating

from LEO and one from GEO, the bistatic surveillance system using the LEO transmitter will have

better detection performance. These are peculiarities of purely geometric properties.

We discovered the preceding tradeoffs without discussing the detection model. We assumed

that if a tradeoff increased the target-scattered power flux at the observer, detection performance

would improve. In order to investigate more complex phenomenon including the effect of the

duration of the target illumination, we chose a basic energy detection model in section 2.3 with a

performance determined by the signal-to-noise ratio and the time-bandwidth product. Generally

detection performance improves if either the signal-to-noise ratio is increased or the time-bandwidth

product is decreased while the other quantity is held constant.

Transponder bandwidths dominate the bandwidth of the scattered radiation, having 27 and

36 MHz bandwidths typically. Using the detection model we observed that the bandwidth of

the surveillance system should be reduced to as small a value as possible. This leads to the

postulation of a correlation receiver in section 2.4 that could recover the signal envelope and reduce

the required bandwidth to at least the reciprocal of the signal duration but no more than the 100 Hz

or so bandwidth due to target cross-section fluctuation. Other minimum time-bandwidth receiver

implementations would exhibit similar detection performance.

The signal component associated with the transmitter illumination and the potential signal

due to target scattering must be separately available in order to implement the correlation receiver,

which is based on a signal mixing principle. This signal separation can be accomplished by resolving

the potential target and the communications satellite transmission in angle. Angle resolution can

be accomplished by a beam-forming antenna array as proposed in section 2.5, possibly with sidelobe

cancellation techniques. Using the detection model we discussed maximization of the aperture-time

product in section 2.6, as determined by the array configuration, to improve surveillance system

detection performance. The antenna array modei that we proposed was general enough to show
that no matter how many antenna array elements are used, the array should not be thinned (the

array elements should not be moved further away from each other than necessary). Removing
elements from the array, or separating the elements would cause the aperture-time product to be

reduced.

The minimum detectable projected target area was calculated in section 3.2 to demonstrate

the preceding tradeoff analyses. Most of these calculations were based on an assumption that

the detection time was limited by the time that the target takes to fly through a single fixed

antenna beam. By assuming possible trajectories for the target, signal energy can be collected

over multiple array antenna beams before detection, improving the detection performance. This

is a useful concept, discussed in section 2.7, when the target is illuminated longer than it requires

to pass through a single receiver antenna beam. This approach does not make sense in an active
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staring monostatic sensor that has an illumination antenna pattern that is nearly the same as its
receiver antenna pattern.

Ignoring processing losses, in the near term it appears that a reasonable technical goal for

a surveillance system based on these principles might be the detection and tracking of .1 m _-

area targets. This is about 3 orders of magnitude larger than the projected areas of the 1 cm

LEO targets that generally elude the current space-surveillance system. A GEO communications

satellite such as the ACTS can provide a capability for GEO targets also. Perhaps surprising, the

performance of a ground-to-ground surveillance system that accidentally illuminates LEO targets
with the communications satellite system uplink transmitter might provide the best near-term LEO
performance.

In the future communications satellite systems may be placing 10 -1° W/m 2 or more on

the ground in urban areas in order to reduce the number of blocked and accidentally terminated

transmissions to hand-held terminals with omnidirectional antennas. Their frequencies of operation
may rise to 30 GHz to utilize new portions of the spectrum and also to reduce the antenna size

requirem.ents. Both of these future developments would improve the performance of the space-to-
ground surveillance system.

The minimum detectable projected target areas under some assumptions were small enough

that the characteristic sizes of the smallest targets were on the order of a radiation wavelength.
This condition can be regarded as a practical limit of conventional microwave surveillance sensors.

Under such conditions the cross section of the target is not guaranteed to be simply related to its
projected area.

4.2 Potential Applications

As evidenced by figure 15, there are a number of possible parasitic systems that could detect

and track payload and rocket-body class targets in LEO or HEO, in fact anywhere that there is a

suitable transmitter nearby. We assume that all viable architectures use an existing transmitter

because of its cost to build and maintain, in space or on the ground. It might come as a sur-

prise that these flea-powered systems could be used at all, considering the expensive and powerful

transmission hardware that is used in the current space-surveillance system. These parasitic sys-

tems utilize transmitters with peak power equal to their average power, generally the simplest and

most inexpensive way to deliver power to a load. A transmitter in a monostatic radar operating

at 10% duty cycle must be designed to deliver peak powers 10 times greater than the system's

average illumination power, increasing its cost and complexity. Also, as evidenced by equation 1

and figure 9, forward-scattering enhancement provides a significant cross-section advantage. Thus

if nothing else, thinking about the technologies needed to implement these parasitic systems might
lead to more efficient and less expensive surveillance radars.
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4.2.1 Ground-to-Ground Systems

The smallesttechnicalrisk is associatedwith a ground-to-groundsurveillancesystemus-
ing the communicationssatelliteuplink asa LEO target illuminator. Exceptfor the wideband
continuous-timeillunfination, the systemneednot be verydifferentfrom existingmultistatic and
monostaticsystems.Thesystemisoperatedat smallbistaticangles.Forwardscatteringenhance-
ment is not involved. Thereforeplacingthe receiveroverthe horizon from the transmitter, or
anywherethat it is sufficientlyshielded,shouldmakeit possibleto recovertheweakscatter from
the target without beingjammedby the uplink. In order to implementan envelopedetection
typeof receiverasdiscussedin section2.4,somearrangementmightbemadeto obtain a reference
signalfrom a cooperativeuplink. Anotherpossibilityis to receivethe downlinkedsignalfrom the
illuminatedcommunicationssatellitetransponderwhichisat adifferent(typically lower)frequency
andtranslateit to obtainthe local receiverreferencesignal.

The ground-to-groundsystemis limited to the detectionof LEO targetsand its coverageof
the LEO environmentis limited. A moreinterestingsystemmight combinea ground-to-ground
systemwith a space-to-groundsystemfor illuminationof HEOtargetsandalargernumberof LEO
targetsthan thoseilluminatedby the uplink alone. The space-to-groundsystem,which utilizes
forwardscatteringenhancement,facesadditionaltechnicalchallenges.This schemecould utilize
all of the transmittersin agivencommunicationssatellitesystem.

4.2.2 Space-to-Ground Systems

In section2.2it wasshownthat thesensitivityof a bistaticradarcanbeexpectedto improve
as the target nearsthe transmitter or receiver. Thereforespace-to-groundsystemsthat utilize
a GEO communicationssatellite transmitterare bestusedto detectand track targets in HEO
or LEO,while LEO communicationssatellitesare bestusedto illuminateLEO targets. Hereby
best is meant the situation that allows the detection and tracking of the smallest targets. Such

parasitic bistatic radars will not be as sensitive as existing monostatic surveillance radars because
the transmitters have much less average power. Improving the performance of these space-to-ground

systems involves a technical risk that follows from the need to take advantage of forward scattering

enhancement.

It is well known that the target has the greatest cross section, and hence the smallest targets

are detectable, at a bistatic angle near 180 degrees, as discussed in section 2.1. The effect persists

within a few degrees of the optimum geometry. This advantage is very pronounced when the target

dimension is many wavelengths, but goes away as the target size decreases to a wavelength. Thus

the forward scattering geometry is only advantageous when the system sensitivity is not great

enough to detect targets on the order of a wavelength at small bistatic angles anyway. We found

from figure 9 that typical space-to-ground system sensitivities are such that forward scattering does

provide an advantage, without it the smallest targets that can be detected axe many wavelengths

in size. Therefore we consider the forward scattering case and its technical risk further.
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When the receiver,targetandtransmitterarenearlycolinearin orderto utilizethe forward
scatteringenhancement,recoveringthe weaktargetscatterin the presenceof the strongdirect
illuminator radiation must beconsidered.The scatterfrom the target is muchweakerthan the
directillumination onthereceiverasevidencedbyfigure4. Typicalschemesfor recoveringtheweak
target scatter relyon the fact that the forwardscatteringenhancementpersistsat bistaticangles
slightly lessthan 180degrees,whenthe transmitter, targetand receiverarenot quite positioned
alongthe sameline.

Thereareseveralwaysto exploit theslight non-colinearity.In a onescheme,the transmitter
transmitsa sinusoid,sothat the Dopplershift in the scatteredreturn from a target allowsit to
beseparatedfrom the direct transmissionwith a bandpassfilter. TherelativeDopplershift in the
targetscattervanishesof courseasthetargetcrossesthe line between the transmitter and receiver,
hence the non-colinearity is required. Another common scheme pulses the transmitter so that the

scatter from a target arrives at the receiver while the transmitter is turned off. Of course there is

no relative time delay between the target scatter and the direct transmission when the target lies

directly on the line between the transmitter and receiver. Again the non-colinearity is required.

These are examples of schemes that allow the target scatter, at more than 100 dB below the power

received directly from the transmitter, to be recovered without being jammed in the receiver by the

direct illuminator transmission. An excellent overview with references is found in [14], particularly
section 1.4.

If an e_sting communications satellite is utilized, its transmissions will be neither pulsed nor

sinusoidal. It radiates a wideband waveform continuously. The missing technology is a demon-

stration of the ability to operate parasitic radars at very large bistatic angles with a wideband

continuously radiating illuminator. No reference providing evidence that this technology has been

demonstrated was found by the author. In a very recent article, Koch and Westphal [11] have only

succeeded in recording the power fluctuations that occur in a Global Positioning System satellite

receiver as large aircraft and spacecraft pass between the transmitter and the receiver. Furthermore
their accomplishment is not unique.

In this report one possible solution employing angle diversity was suggested in sections 2.4 and

2.5. Angle diversity is a way of taking advantage of the slightly non-colinear relationship among the

positions of the transmitter, target and receiver. Other solutions may be possible. In any case it is

very important to remember that any solution must embody a minimal time-bandwidth receiving

system. As illustrated in figure 6, a system with larger time-bandwidth product is likely to perform

so poorly that the forward-scattering advantage will be lost anyway and the designer might as well
fall back to the case of small bistatic angles.

4.3 Small Aperture Space-to-Ground Systems

In section 2.5 where the antenna array model is described, it is stated that only the size of

the array directly affects the target detection capability. The minimum detectable projected target

areas can be achieved with a single element antenna as well as an array of the same size with many
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elements, provided that the in both cases the receiver is equally implementable. A single element

antenna is simpler than an array.

Also note from the appro.'dmate expression 24 and, say, figure 15 that the minimum detectable

projected target areas do not depend strongly on the antenna size so that a system with one square
meter of aperture will be able to see objects with an area only ten times greater than an object

detectable with a 100 meter by 100 meter array! Such objects might have characteristic dimensions

only slightly more than 3 times the dimensions of the smallest object detectable by the system

with the 100 by 100 meter array! When put his way, it becomes interesting to think about a

parasitic space-to-ground surveillance system with a small dish antenna that would fit in a truck,

for example. 2

How could we implement the system without a large number of elements? The answer will

not be determined in this report. However, because of the large intensity difference at the receiver

between the target scatter and the direct transmitter illumination, nulling may play a role. Suppose,

only for example, that a single antenna is aligned to receive the direct transmission from the

illuminating satellite with maximum gain. A second identical antenna might be aligned so that

its maximum gain is achieved at an angle corresponding to an angle of minimum gain for the

first antenna. The second antenna achieves some rejection of the signal contribution due to direct

illumination by the communications satellite. Furthermore, the signals from the two antennas can
be combined to adaptively null this contribution from the second antenna beyond the amount of

rejection due only to the antenna patterns. Further signal-to-clutter improvement might be achieved

by processing that takes advantage of the structure of the signal associated with the illuminator,

typically frequency modulation. The final signal-to-clutter ratio that could be achieved would limit

the performance of the small aperture system. Only two small antenna elements have been used,

hence the comple_ty of the antenna array is minimal.

4.4 Conclusions

Several architectures for a parasitic radar that utilizes an e_sting component of a satellite

communications system seem possible for the detection and tracking of payload and rocket-body

size targets. For LEO targets the best detection performance will probably be obtained with a

ground-to-ground system that uses a satellite uplink as a target illuminator. For greater surveillance

coverage, including HEO, a space-to-ground system utilizing a communications satellite transmitter

2From equation 24 it is clear that the minimum detectable projected target area depends weakly on

many variables. Improvements in system temperature, transmitter power, antenna array size and

so forth are rewarded by only a square-root improvement in the detectable area. For this reason the

use of multiple illuminating sources and wide-band receivers is also an expensive way to improve

the detection performance, although technically not difficult to imagine.
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andforward scattering enhancement might be postulated, but the illuminator tends to jam detection
of the weak target scatter in the receiver at large bistatic angles.

A demonstration of a receiving system that operates at large bistatic angles with wide-band

continuous-time illumination of the target appears to be the new technology that is required for

a space-to-ground system. There is only a weak dependence of the detection performance of this

system on antenna array size, so smaller and relatively inexpensive systems become interesting.
The required technology can be demonstrated by achieving reasonable signaLto-clutter ratios in a
small aperture space-to-ground system.
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